Suppr超能文献

将宏观图分析组织与猕猴连接组的微观神经构筑联系起来。

Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome.

机构信息

Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.

Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands

出版信息

J Neurosci. 2014 Sep 3;34(36):12192-205. doi: 10.1523/JNEUROSCI.0752-14.2014.

Abstract

Macroscale connectivity of the mammalian brain has been shown to display several characteristics of an efficient communication network architecture. In parallel, at the microscopic scale, histological studies have extensively revealed large interregional variation in cortical neural architectonics. However, how these two "scales" of cerebrum organization are linked remains an open question. Collating and combining data across multiple studies on the cortical cytoarchitecture of the macaque cortex with information on macroscale anatomical wiring derived from tract tracing studies, this study focuses on examining the interplay between macroscale organization of the macaque connectome and microscale cortical neuronal architecture. Our findings show that both macroscale degree as well as the topological role in the overall network are related to the level of neuronal complexity of cortical regions at the microscale, showing (among several effects) a positive overall association between macroscale degree and metrics of microscale pyramidal complexity. Macroscale hub regions, together forming a densely interconnected "rich club," are noted to display a high level of neuronal complexity, findings supportive of a high level of integrative neuronal processes to occur in these regions. Together, we report on cross-scale observations that jointly suggest that a region's microscale neuronal architecture is tuned to its role in the global brain network.

摘要

哺乳动物大脑的宏观连接已被证明具有高效通信网络架构的几个特征。与此同时,在微观尺度上,组织学研究广泛揭示了皮质神经构筑在区域间存在很大的变化。然而,这两个“尺度”的大脑组织如何联系在一起仍然是一个悬而未决的问题。本研究整合了多个关于猕猴皮质细胞构筑的皮质细胞构筑研究数据,并结合来自示踪研究的宏观解剖布线信息,重点研究了猕猴连接组的宏观组织与微观皮质神经元结构之间的相互作用。我们的研究结果表明,宏观尺度的程度以及在整个网络中的拓扑作用与微观尺度上皮质区域的神经元复杂性水平有关,显示出(在几种影响中)宏观尺度的程度与微观尺度上的金字塔复杂性度量之间存在正相关。宏观尺度的枢纽区域共同形成一个密集连接的“丰富俱乐部”,被认为具有高水平的神经元复杂性,这一发现支持这些区域中发生高水平的整合神经元过程。总的来说,我们报告了跨尺度的观察结果,共同表明一个区域的微观神经元结构与其在全球大脑网络中的作用相适应。

相似文献

1
Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome.
J Neurosci. 2014 Sep 3;34(36):12192-205. doi: 10.1523/JNEUROSCI.0752-14.2014.
3
Topological organization of connectivity strength in the rat connectome.
Brain Struct Funct. 2016 Apr;221(3):1719-36. doi: 10.1007/s00429-015-0999-6. Epub 2015 Feb 20.
4
Common Microscale and Macroscale Principles of Connectivity in the Human Brain.
J Neurosci. 2022 May 18;42(20):4147-4163. doi: 10.1523/JNEUROSCI.1572-21.2022. Epub 2022 Apr 14.
5
Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex.
J Neurosci. 2015 Oct 14;35(41):13943-8. doi: 10.1523/JNEUROSCI.2630-15.2015.
6
Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex.
Hum Brain Mapp. 2016 May;37(5):1856-65. doi: 10.1002/hbm.23141. Epub 2016 Mar 11.
7
Associated Microscale Spine Density and Macroscale Connectivity Disruptions in Schizophrenia.
Biol Psychiatry. 2016 Aug 15;80(4):293-301. doi: 10.1016/j.biopsych.2015.10.005. Epub 2015 Oct 13.
8
Multiscale examination of cytoarchitectonic similarity and human brain connectivity.
Netw Neurosci. 2018 Nov 1;3(1):124-137. doi: 10.1162/netn_a_00057. eCollection 2019.
9
Rich club organization of macaque cerebral cortex and its role in network communication.
PLoS One. 2012;7(9):e46497. doi: 10.1371/journal.pone.0046497. Epub 2012 Sep 28.
10
Individual variability in the anatomical distribution of nodes participating in rich club structural networks.
Front Neural Circuits. 2015 Apr 21;9:16. doi: 10.3389/fncir.2015.00016. eCollection 2015.

引用本文的文献

1
The effect of spherical projection on spin tests for brain maps.
Imaging Neurosci (Camb). 2025 Aug 21;3. doi: 10.1162/IMAG.a.118. eCollection 2025.
3
Mapping the microstructure of human cerebral cortex in vivo with diffusion MRI.
Commun Biol. 2025 Jul 22;8(1):1088. doi: 10.1038/s42003-025-08523-9.
4
A simulated annealing algorithm for randomizing weighted networks.
Nat Comput Sci. 2025 Jan;5(1):48-64. doi: 10.1038/s43588-024-00735-z. Epub 2024 Dec 10.
5
Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia.
Biol Psychiatry Glob Open Sci. 2024 May 28;4(5):100336. doi: 10.1016/j.bpsgos.2024.100336. eCollection 2024 Sep.
6
Molecular signatures of attention networks.
Hum Brain Mapp. 2024 Feb 15;45(3):e26588. doi: 10.1002/hbm.26588.
7
Multiscale network neuroscience in neuro-oncology: How tumors, brain networks, and behavior connect across scales.
Neurooncol Pract. 2023 Aug 22;10(6):506-517. doi: 10.1093/nop/npad044. eCollection 2023 Dec.
8
The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity.
PLoS Biol. 2023 Nov 9;21(11):e3002365. doi: 10.1371/journal.pbio.3002365. eCollection 2023 Nov.
9
Towards a biologically annotated brain connectome.
Nat Rev Neurosci. 2023 Dec;24(12):747-760. doi: 10.1038/s41583-023-00752-3. Epub 2023 Oct 17.
10
Predicting longitudinal brain atrophy in Parkinson's disease using a Susceptible-Infected-Removed agent-based model.
Netw Neurosci. 2023 Oct 1;7(3):906-925. doi: 10.1162/netn_a_00296. eCollection 2023.

本文引用的文献

1
The Neonatal Connectome During Preterm Brain Development.
Cereb Cortex. 2015 Sep;25(9):3000-13. doi: 10.1093/cercor/bhu095. Epub 2014 May 15.
3
Comparative analysis of the macroscale structural connectivity in the macaque and human brain.
PLoS Comput Biol. 2014 Mar 27;10(3):e1003529. doi: 10.1371/journal.pcbi.1003529. eCollection 2014 Mar.
4
The Laplacian spectrum of neural networks.
Front Comput Neurosci. 2014 Jan 13;7:189. doi: 10.3389/fncom.2013.00189.
5
Network hubs in the human brain.
Trends Cogn Sci. 2013 Dec;17(12):683-96. doi: 10.1016/j.tics.2013.09.012.
6
The evolution of distributed association networks in the human brain.
Trends Cogn Sci. 2013 Dec;17(12):648-65. doi: 10.1016/j.tics.2013.09.017. Epub 2013 Nov 7.
7
Structural and functional brain networks: from connections to cognition.
Science. 2013 Nov 1;342(6158):1238411. doi: 10.1126/science.1238411.
8
Cortical high-density counterstream architectures.
Science. 2013 Nov 1;342(6158):1238406. doi: 10.1126/science.1238406.
9
An anatomical substrate for integration among functional networks in human cortex.
J Neurosci. 2013 Sep 4;33(36):14489-500. doi: 10.1523/JNEUROSCI.2128-13.2013.
10
Evidence for hubs in human functional brain networks.
Neuron. 2013 Aug 21;79(4):798-813. doi: 10.1016/j.neuron.2013.07.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验