Department of IT Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.
Sensors (Basel). 2022 Dec 7;22(24):9595. doi: 10.3390/s22249595.
Vehicular edge computing (VEC) is a promising technology for supporting computation-intensive vehicular applications with low latency at the network edges. Vehicles offload their tasks to VEC servers (VECSs) to improve the quality of service (QoS) of the applications. However, the high density of vehicles and VECSs and the mobility of vehicles increase channel interference and deteriorate the channel condition, resulting in increased power consumption and latency. Therefore, we proposed a task offloading method with the power control considering dynamic channel interference and conditions in a vehicular environment. The objective is to maximize the throughput of a VEC system under the power constraints of a vehicle. We leverage deep reinforcement learning (DRL) to achieve superior performance in complex environments and high-dimensional inputs. However, most conventional methods adopted the multi-agent DRL approach that makes decisions using only local information, which can result in poor performance, while single-agent DRL approaches require excessive data exchanges because data needs to be concentrated in an agent. To address these challenges, we adopt a federated deep reinforcement learning (FL) method that combines centralized and distributed approaches to the deep deterministic policy gradient (DDPG) framework. The experimental results demonstrated the effectiveness and performance of the proposed method in terms of the throughput and queueing delay of vehicles in dynamic vehicular networks.
车载边缘计算(VEC)是一种很有前途的技术,可在网络边缘以低延迟支持计算密集型车载应用。车辆将任务卸载到 VEC 服务器(VECS)以提高应用的服务质量(QoS)。然而,车辆和 VECS 的高密度以及车辆的移动性增加了信道干扰并恶化了信道条件,导致功耗和延迟增加。因此,我们提出了一种考虑动态信道干扰和车载环境条件的功率控制的任务卸载方法。目标是在车辆功率约束下最大化 VEC 系统的吞吐量。我们利用深度强化学习(DRL)在复杂环境和高维输入中实现卓越的性能。然而,大多数传统方法采用多智能体 DRL 方法,该方法仅使用本地信息做出决策,这可能导致性能不佳,而单智能体 DRL 方法需要过多的数据交换,因为数据需要集中在一个代理中。为了解决这些挑战,我们采用了联邦深度强化学习(FL)方法,该方法将集中式和分布式方法结合到深度确定性策略梯度(DDPG)框架中。实验结果表明,所提出的方法在动态车载网络中车辆的吞吐量和排队延迟方面具有有效性和性能。