Suppr超能文献

基于深度强化学习的车载边缘计算卸载决策算法

Deep reinforcement learning based offloading decision algorithm for vehicular edge computing.

作者信息

Hu Xi, Huang Yang

机构信息

Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, China.

出版信息

PeerJ Comput Sci. 2022 Oct 11;8:e1126. doi: 10.7717/peerj-cs.1126. eCollection 2022.

Abstract

Task offloading decision is one of the core technologies of vehicular edge computing. Efficient offloading decision can not only meet the requirements of complex vehicle tasks in terms of time, energy consumption and computing performance, but also reduce the competition and consumption of network resources. Traditional distributed task offloading decision is made by vehicles based on local states and can't maximize the resource utilization of Mobile Edge Computing (MEC) server. Moreover, the mobility of vehicles is rarely taken into consideration for simplification. This article proposes a deep reinforcement learning based task offloading decision algorithm, namely Deep Reinforcement learning based offloading decision (DROD) for Vehicular Edge Computing (VEC). In this work, the mobility of vehicles and the signal blocking commonly in VEC circumstance are considered in our optimal problem of minimizing the system overhead. For resolving the optimal problem, the DROD employs Markov decision process to model the interactions between vehicles and MEC server, and an improved deep deterministic policy gradient algorithm called NLDDPG to train the model iteratively to obtain the optimal decision. The NLDDPG takes the normalized state space as input and introduces LSTM structure into the actor-critic network for improving the efficiency of learning. Finally, two series of experiments are conducted to explore DROD. Firstly, the influences of core hyper-parameters on the performances of DROD are discussed, and the optimal values are determined. Secondly, the DROD is compared with some other baseline algorithms, and the results show that DROD is 25% better than DQN, 10% better than NLDQN and 130% better than DDDPG.

摘要

任务卸载决策是车载边缘计算的核心技术之一。高效的卸载决策不仅能在时间、能耗和计算性能方面满足复杂车辆任务的要求,还能减少网络资源的竞争和消耗。传统的分布式任务卸载决策由车辆根据本地状态做出,无法使移动边缘计算(MEC)服务器的资源利用率最大化。此外,为简化起见,很少考虑车辆的移动性。本文提出了一种基于深度强化学习的任务卸载决策算法,即用于车载边缘计算(VEC)的基于深度强化学习的卸载决策(DROD)。在这项工作中,我们在最小化系统开销的优化问题中考虑了车辆的移动性以及VEC环境中常见的信号阻塞情况。为了解决该优化问题,DROD采用马尔可夫决策过程对车辆与MEC服务器之间的交互进行建模,并使用一种名为NLDDPG的改进深度确定性策略梯度算法对模型进行迭代训练以获得最优决策。NLDDPG以归一化状态空间作为输入,并将长短期记忆(LSTM)结构引入到智能体-评论家网络中以提高学习效率。最后,进行了两组实验来探究DROD。首先,讨论了核心超参数对DROD性能的影响,并确定了最优值。其次,将DROD与其他一些基线算法进行比较,结果表明DROD比深度Q网络(DQN)优25%,比NLDQN优10%,比深度确定性双延迟深度确定性策略梯度算法(DDDPG)优130%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5648/9575847/6a886c97d804/peerj-cs-08-1126-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验