Information Retrieval and Knowledge Management Laboratory, York University, Toronto, ON M3J 1P3, Canada.
National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
Sensors (Basel). 2022 Dec 8;22(24):9628. doi: 10.3390/s22249628.
We propose a new generative model named adaptive cycle-consistent generative adversarial network, or Ad CycleGAN to perform image translation between normal and COVID-19 positive chest X-ray images. An independent pre-trained criterion is added to the conventional Cycle GAN architecture to exert adaptive control on image translation. The performance of Ad CycleGAN is compared with the Cycle GAN without the external criterion. The quality of the synthetic images is evaluated by quantitative metrics including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), Universal Image Quality Index (UIQI), visual information fidelity (VIF), Frechet Inception Distance (FID), and translation accuracy. The experimental results indicate that the synthetic images generated either by the Cycle GAN or by the Ad CycleGAN have lower MSE and RMSE, and higher scores in PSNR, UIQI, and VIF in homogenous image translation (i.e., Y → Y) compared to the heterogenous image translation process (i.e., X → Y). The synthetic images by Ad CycleGAN through the heterogeneous image translation have significantly higher FID score compared to Cycle GAN (p < 0.01). The image translation accuracy of Ad CycleGAN is higher than that of Cycle GAN when normal images are converted to COVID-19 positive images (p < 0.01). Therefore, we conclude that the Ad CycleGAN with the independent criterion can improve the accuracy of GAN image translation. The new architecture has more control on image synthesis and can help address the common class imbalance issue in machine learning methods and artificial intelligence applications with medical images.
我们提出了一种新的生成模型,名为自适应循环一致生成对抗网络(Adaptive Cycle-Consistent Generative Adversarial Network,简称 Ad CycleGAN),用于在正常和 COVID-19 阳性胸部 X 光图像之间进行图像翻译。在传统的 CycleGAN 架构中添加了一个独立的预训练标准,以对图像翻译进行自适应控制。将 Ad CycleGAN 的性能与没有外部标准的 CycleGAN 进行比较。通过包括均方误差(Mean Squared Error,MSE)、均方根误差(Root Mean Squared Error,RMSE)、峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、通用图像质量指数(Universal Image Quality Index,UIQI)、视觉信息保真度(visual information fidelity,VIF)、Frechet inception 距离(Frechet Inception Distance,FID)和翻译精度在内的定量指标来评估合成图像的质量。实验结果表明,与异质图像翻译过程(即 X→Y)相比,无论是通过 CycleGAN 还是 Ad CycleGAN 生成的合成图像在同质图像翻译(即 Y→Y)中具有更低的 MSE 和 RMSE,以及更高的 PSNR、UIQI 和 VIF 分数。通过异质图像翻译生成的 Ad CycleGAN 合成图像的 FID 得分明显高于 CycleGAN(p<0.01)。当将正常图像转换为 COVID-19 阳性图像时,Ad CycleGAN 的图像翻译准确性高于 CycleGAN(p<0.01)。因此,我们得出结论,具有独立标准的 Ad CycleGAN 可以提高 GAN 图像翻译的准确性。新架构对图像合成具有更多的控制,可以帮助解决机器学习方法和人工智能应用中常见的医学图像类不平衡问题。