Suppr超能文献

基于数值模型的轴承故障诊断多维域信息传递方法。

Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis.

机构信息

School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.

出版信息

Sensors (Basel). 2022 Dec 13;22(24):9759. doi: 10.3390/s22249759.

Abstract

Given the complexity of the application scenarios of rolling bearing and the severe scarcity of fault samples, a solution to the issue of fault diagnosis under varying working conditions along with the absence of fault samples is required. A numerical model-driven cross-domain fault diagnosis method targeting variable working conditions is proposed based on the cross-Domain Nuisance Attribute Projection (cDNAP). Firstly, the simulation datasets consisting of multiple fault types under variable working conditions are constructed to solve the problem of incomplete fault samples. Secondly, the simulation datasets are expanded by means of generating adversarial network to ensure sufficient samples for subsequent model training. Finally, cDNAP is used to obtain the cross-domain simulation projection matrix, which eliminates the variance in the distribution of measured and simulated sample features under varying working conditions. The experimental results of cross-domain for variable working conditions show that the diagnostic accuracy reaches up to 99%. Compared with DANN, DSAN, and DAAN domain adversarial neural networks, the proposed method performs better in bearing fault diagnosis.

摘要

鉴于滚动轴承应用场景的复杂性以及故障样本的严重匮乏,需要一种针对变工况且无故障样本情况下的故障诊断解决方案。本文提出了一种基于跨域干扰属性投影(cDNAP)的数值模型驱动的变工况跨域故障诊断方法。首先,构建了多个变工况下的故障类型的仿真数据集,以解决故障样本不完整的问题。其次,采用生成对抗网络对仿真数据集进行扩展,以保证后续模型训练有足够的样本。最后,利用 cDNAP 获取跨域仿真投影矩阵,消除了变工况下测量样本和仿真样本特征分布的差异。变工况下的跨域实验结果表明,诊断准确率高达 99%。与 DANN、DSAN 和 DAAN 域对抗神经网络相比,该方法在轴承故障诊断方面表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验