Suppr超能文献

基于小样本条件深度卷积对策生成网络的滚动轴承故障诊断

A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples.

机构信息

School of Computer, Hunan University of Technology, Zhuzhou 412007, China.

School of Automation, Central South University, Changsha 410083, China.

出版信息

Sensors (Basel). 2022 Jul 28;22(15):5658. doi: 10.3390/s22155658.

Abstract

Aiming at the problems of low fault diagnosis accuracy caused by insufficient samples and unbalanced data sample distribution in bearing fault diagnosis, this paper proposes a fault diagnosis method for rolling bearings referencing conditional deep convolution adversarial generative networks (C-DCGAN) for efficient data augmentation. Firstly, the concept of conditional constraints is used to guide and improve the sample generation process of the original generative adversarial network, and specific constraints are added to the data generation model to perform a balanced expansion of muti-category fault data for small sample data sets. Secondly, aiming at the phenomena of training instability, gradient disappearance and gradient explosion in the imbalanced sample set, it is proposed to optimize the structure of the generative network by using the structure of self-defined skip connections and spectral normalization, while using the Wasserstein distance with penalty term instead of cross entropy. The function is used as the loss function of the generative adversarial network to improve the stable feature extraction ability of the generative network and the effect of the training process; in this way, simulation sample data with only a small variation from the real data distribution can be generated. Finally, the complete fault data set (after mixing the original data with sufficient fault category and sample number) and the generated data are input into the one-dimensional convolution neural network for fault diagnosis of rolling bearing. The experiment's results show that the diagnosis method in this paper can improve the fault classification effect of rolling bearings by generating balanced and sufficient sample data.

摘要

针对轴承故障诊断中样本不足和数据样本分布不均衡导致故障诊断精度低的问题,提出了一种基于条件深度卷积生成对抗网络(C-DCGAN)的滚动轴承故障诊断方法,用于高效的数据扩充。首先,利用条件约束的概念来指导和改进原始生成对抗网络的样本生成过程,为小样本数据集的多类别故障数据添加具体约束,实现均衡扩展。其次,针对不平衡样本集中的训练不稳定、梯度消失和梯度爆炸等现象,提出通过使用自定义跳过连接和谱归一化的生成网络结构,同时使用带惩罚项的Wasserstein 距离替代交叉熵函数作为生成对抗网络的损失函数,来优化生成网络的结构,提高生成网络的稳定特征提取能力和训练过程的效果;这样可以生成与真实数据分布只有微小差异的仿真样本数据。最后,将完整的故障数据集(将原始数据与具有足够故障类别和样本数量的混合数据)和生成的数据输入到一维卷积神经网络中,对滚动轴承进行故障诊断。实验结果表明,该方法可以通过生成均衡且充足的样本数据来提高滚动轴承的故障分类效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfc7/9370996/be83b3267735/sensors-22-05658-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验