Suppr超能文献

基于 SABAT 中子的爆炸物探测器与无人地面车辆集成的性能:一项模拟研究。

Performance of the SABAT Neutron-Based Explosives Detector Integrated with an Unmanned Ground Vehicle: A Simulation Study.

机构信息

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.

Military Institute of Armoured and Automotive Technology, Okuniewska 1, 05-070 Sulejowek, Poland.

出版信息

Sensors (Basel). 2022 Dec 19;22(24):9996. doi: 10.3390/s22249996.

Abstract

The effective and safe detection of illicit materials, explosives in particular, is currently of growing importance taking into account the geopolitical situation and increasing risk of a terrorist attack. The commonly used methods of detection are based predominantly on metal detectors and georadars, which show only the shapes of the possible dangerous objects and do not allow for exact identification and risk assessment. A supplementary or even alternative method may be based on neutron activation analysis, which provides the possibility of a stoichiometric analysis of the suspected object and its non-invasive identification. One such sensor is developed by the SABAT collaboration, with its primary application being underwater threat detection. In this article, we present performance studies of this sensor, integrated with a mobile robot, in terms of the minimal detectable quantity of commonly used explosives in different environmental conditions. The paper describes the functionality of the used platform considering electronics, sensors, onboard computing power, and communication system to carry out manual operation and remote control. Robotics solutions based on modularized structures allow the extension of sensors and effectors that can significantly improve the safety of personnel as well as work efficiency, productivity, and flexibility.

摘要

目前,考虑到地缘政治局势和恐怖袭击风险的增加,非法材料(特别是爆炸物)的有效和安全检测变得越来越重要。常用的检测方法主要基于金属探测器和地质雷达,这些方法只能显示可能危险物体的形状,无法进行准确的识别和风险评估。一种补充甚至替代的方法可能基于中子活化分析,该方法提供了对可疑物体进行化学计量分析和非侵入式识别的可能性。SABAT 合作开发的一种传感器就是基于这种方法,其主要应用是水下威胁检测。在本文中,我们将展示该传感器与移动机器人集成的性能研究,研究内容是在不同环境条件下检测常见爆炸物的最小可检测量。本文描述了所使用平台的功能,包括电子设备、传感器、板载计算能力和通信系统,以实现手动操作和远程控制。基于模块化结构的机器人解决方案允许扩展传感器和执行器,这可以显著提高人员的安全性以及工作效率、生产力和灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6a3/9785954/431d8eeaf8fd/sensors-22-09996-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验