Suppr超能文献

基于尿蛋白质组学和天然化合物筛选构建膀胱癌患者无创预后模型。

Construction of noninvasive prognostic model of bladder cancer patients based on urine proteomics and screening of natural compounds.

机构信息

Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.

Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.

出版信息

J Cancer Res Clin Oncol. 2023 Jan;149(1):281-296. doi: 10.1007/s00432-022-04524-x. Epub 2022 Dec 23.

Abstract

BACKGROUND

Bladder cancer (BCa) has a high incidence and recurrence rate worldwide. So far, there is no noninvasive detection of BCa therapy and prognosis based on urine multi-omics. Therefore, it is necessary to explore noninvasive predictive models and novel treatment modalities for BCa.

METHODS

First, we performed protein analysis of urine from five BCa patients and five healthy individuals using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Combining multi-omics data to mine particular and sensitive molecules to predict BCa prognosis. Second, urine proteomics data were combined with TCGA transcriptome data to select differential genes that were specifically highly expressed in urine and tissues. Further, the Lasso equation was used to screen specific molecules to construct a noninvasive prediction model of BCa. Finally, natural compounds of specific molecules were selected by combined network pharmacology and molecular docking to complete molecular structure docking.

RESULTS

A noninvasive predictive model was constructed using PSMB5, P4HB, S100A16, GET3, CNP, TFRC, DCXR, and MPZL1, specific molecules screened by multi-omics, and clinical features, which had good predictive value at 1, 3, and 5 years of prediction. High expression of these target genes suggests a poor prognosis in patients with BCa, and they were mainly involved in cell adhesion molecules and the IGF pathway. In addition, the corresponding drugs and natural compounds were selected by network pharmacology, and the molecular structure 7NHT of PSMB5 was found to be well docked to Ellagic acid, a natural compound in Hetaoren that we found. The 3D structure 6I7S of P4HB was able to bind to Stigmasterol in Shanzha stably, and the structure 6WRV of TFRC as an iron transport carrier was also able to bind to Stigmasterol in Shanzha stably. The structures 1WOJ, 3D3W, and 6IGW of CNP, DCXR, and MPZL1 can also play an important role in combination with the natural compounds (S)-Stylopine, Kryptoxanthin, and Sitosterol in Maqianzi, Yumixu, and Laoguancao.

CONCLUSION

The noninvasive prediction model based on urinomics had excellent potential in predicting the prognosis of patients with BCa. The multi-omics screening of specific molecules combined with pharmacology and compound molecular docking can promote the research and development of novel drugs.

摘要

背景

膀胱癌(BCa)在全球范围内具有较高的发病率和复发率。迄今为止,尚无基于尿液多组学的无创性 BCa 治疗和预后检测方法。因此,有必要探索用于 BCa 的无创性预测模型和新型治疗方法。

方法

首先,我们使用液相色谱-串联质谱(LC-MS/MS)对 5 名 BCa 患者和 5 名健康个体的尿液进行蛋白质分析。结合多组学数据挖掘出预测 BCa 预后的特定且敏感的分子。其次,将尿液蛋白质组学数据与 TCGA 转录组数据相结合,筛选出在尿液和组织中特异性高表达的差异基因。进一步,使用 Lasso 方程筛选特定分子以构建 BCa 的无创预测模型。最后,通过联合网络药理学和分子对接选择特定分子的天然化合物,以完成分子结构对接。

结果

使用多组学筛选的 PSMB5、P4HB、S100A16、GET3、CNP、TFRC、DCXR 和 MPZL1 等特定分子和临床特征构建了一个无创预测模型,该模型在 1、3 和 5 年的预测中具有良好的预测价值。这些靶基因的高表达表明 BCa 患者预后不良,它们主要参与细胞黏附分子和 IGF 通路。此外,通过网络药理学选择了相应的药物和天然化合物,并发现 PSMB5 的天然化合物诃子鞣花酸与我们发现的 PSMB5 的分子结构 7NHT 结合良好。P4HB 的 3D 结构 6I7S 能够稳定结合山植中的豆甾醇,而作为铁转运载体的 TFRC 的结构 6WRV 也能够稳定结合山植中的豆甾醇。CNP、DCXR 和 MPZL1 的结构 1WOJ、3D3W 和 6IGW 也可以与马钱子、鱼腥草和老鹳草中的天然化合物(S)-Stylopine、叶黄素和β-谷甾醇结合发挥重要作用。

结论

基于尿组学的无创预测模型在预测 BCa 患者的预后方面具有巨大的潜力。特定分子的多组学筛选结合药理学和化合物分子对接可以促进新型药物的研发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验