Wang Bin, Lai Junkai, Jin Feifei, Liao Xiwen, Zhu Huan, Yao Chen
Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China.
Institute of Automation, Chinese Academy of Sciences, Beijing, China.
JMIR Res Protoc. 2022 Dec 23;11(12):e42754. doi: 10.2196/42754.
An eSource generally includes the direct capture, collection, and storage of electronic data to simplify clinical research. It can improve data quality and patient safety and reduce clinical trial costs. There has been some eSource-related research progress in relatively large projects. However, most of these studies focused on technical explorations to improve interoperability among systems to reuse retrospective data for research. Few studies have explored source data collection and quality control during prospective data collection from a methodological perspective.
This study aimed to design a clinical source data collection method that is suitable for real-world studies and meets the data quality standards for clinical research and to improve efficiency when writing electronic medical records (EMRs).
On the basis of our group's previous research experience, TransCelerate BioPharm Inc eSource logical architecture, and relevant regulations and guidelines, we designed a source data collection method and invited relevant stakeholders to optimize it. On the basis of this method, we proposed the eSource record (ESR) system as a solution and invited experts with different roles in the contract research organization company to discuss and design a flowchart for data connection between the ESR and electronic data capture (EDC).
The ESR method included 5 steps: research project preparation, initial survey collection, in-hospital medical record writing, out-of-hospital follow-up, and electronic case report form (eCRF) traceability. The data connection between the ESR and EDC covered the clinical research process from creating the eCRF to collecting data for the analysis. The intelligent data acquisition function of the ESR will automatically complete the empty eCRF to create an eCRF with values. When the clinical research associate and data manager conduct data verification, they can query the certified copy database through interface traceability and send data queries. The data queries are transmitted to the ESR through the EDC interface. The EDC and EMR systems interoperate through the ESR. The EMR and EDC systems transmit data to the ESR system through the data standards of the Health Level Seven Clinical Document Architecture and the Clinical Data Interchange Standards Consortium operational data model, respectively. When the implemented data standards for a given system are not consistent, the ESR will approach the problem by first automating mappings between standards and then handling extensions or corrections to a given data format through human evaluation.
The source data collection method proposed in this study will help to realize eSource's new strategy. The ESR solution is standardized and sustainable. It aims to ensure that research data meet the attributable, legible, contemporaneous, original, accurate, complete, consistent, enduring, and available standards for clinical research data quality and to provide a new model for prospective data collection in real-world studies.
电子源数据通常包括电子数据的直接捕获、收集和存储,以简化临床研究。它可以提高数据质量和患者安全性,并降低临床试验成本。在相对大型的项目中已经取得了一些与电子源数据相关的研究进展。然而,这些研究大多集中在技术探索上,以提高系统间的互操作性,以便将回顾性数据用于研究。很少有研究从方法学角度探讨前瞻性数据收集过程中的源数据收集和质量控制。
本研究旨在设计一种适用于真实世界研究且符合临床研究数据质量标准的临床源数据收集方法,并提高电子病历(EMR)书写效率。
基于我们团队之前的研究经验、TransCelerate生物制药公司的电子源逻辑架构以及相关法规和指南,我们设计了一种源数据收集方法,并邀请相关利益相关者对其进行优化。基于此方法,我们提出了电子源记录(ESR)系统作为一种解决方案,并邀请合同研究组织公司中不同角色的专家讨论并设计ESR与电子数据采集(EDC)之间的数据连接流程图。
ESR方法包括5个步骤:研究项目准备、初始调查收集、院内病历书写、院外随访以及电子病例报告表(eCRF)可追溯性。ESR与EDC之间的数据连接涵盖了从创建eCRF到收集分析数据的临床研究过程。ESR的智能数据采集功能将自动完成空白eCRF,创建带有值的eCRF。当临床研究助理和数据管理员进行数据核查时,他们可以通过接口可追溯性查询认证副本数据库并发送数据查询。数据查询通过EDC接口传输到ESR。EDC和EMR系统通过ESR进行互操作。EMR和EDC系统分别通过卫生信息标准化第七层临床文档架构和临床数据交换标准协会操作数据模型的数据标准将数据传输到ESR系统。当给定系统实施的数据标准不一致时,ESR将首先通过自动进行标准之间的映射,然后通过人工评估处理对给定数据格式的扩展或修正来解决问题。
本研究提出的源数据收集方法将有助于实现电子源数据的新策略。ESR解决方案是标准化且可持续的。它旨在确保研究数据符合临床研究数据质量的可归因、可读、同期、原始、准确、完整、一致、持久和可用标准,并为真实世界研究中的前瞻性数据收集提供一种新模式。