文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于二维纳米酶靶向肿瘤过氧化氢虚拟筛选的透明盒式机器学习

Clear-Box Machine Learning for Virtual Screening of 2D Nanozymes to Target Tumor Hydrogen Peroxide.

作者信息

Gao Xuejiao J, Yan Jun, Zheng Jia-Jia, Zhong Shengliang, Gao Xingfa

机构信息

College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China.

Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.

出版信息

Adv Healthc Mater. 2023 Apr;12(10):e2202925. doi: 10.1002/adhm.202202925. Epub 2023 Jan 13.


DOI:10.1002/adhm.202202925
PMID:36565096
Abstract

Targeting tumor hydrogen peroxide (H O ) with catalytic materials has provided a novel chemotherapy strategy against solid tumors. Because numerous materials have been fabricated so far, there is an urgent need for an efficient in silico method, which can automatically screen out appropriate candidates from materials libraries for further therapeutic evaluation. In this work, adsorption-energy-based descriptors and criteria are developed for the catalase-like activities of materials surfaces. The result enables a comprehensive prediction of H O -targeted catalytic activities of materials by density functional theory (DFT) calculations. To expedite the prediction, machine learning models, which efficiently calculate the adsorption energies for 2D materials without DFT, are further developed. The finally obtained method takes advantage of both interpretability of physics model and high efficiency of machine learning. It provides an efficient approach for in silico screening of 2D materials toward tumor catalytic therapy, and it will greatly promote the development of catalytic nanomaterials for medical applications.

摘要

用催化材料靶向肿瘤过氧化氢(H₂O₂)为实体肿瘤的化疗提供了一种新策略。由于目前已经制备了大量材料,迫切需要一种高效的计算机模拟方法,能够从材料库中自动筛选出合适的候选材料进行进一步的治疗评估。在这项工作中,针对材料表面的类过氧化氢酶活性,开发了基于吸附能的描述符和标准。该结果能够通过密度泛函理论(DFT)计算全面预测材料对H₂O₂的靶向催化活性。为了加快预测速度,还开发了机器学习模型,该模型无需DFT即可高效计算二维材料的吸附能。最终获得的方法利用了物理模型的可解释性和机器学习的高效率。它为二维材料用于肿瘤催化治疗的计算机模拟筛选提供了一种有效方法,并将极大地促进用于医学应用的催化纳米材料的发展。

相似文献

[1]
Clear-Box Machine Learning for Virtual Screening of 2D Nanozymes to Target Tumor Hydrogen Peroxide.

Adv Healthc Mater. 2023-4

[2]
Nanozymes-recent development and biomedical applications.

J Nanobiotechnology. 2022-2-22

[3]
Guiding Transition Metal-Doped Hollow Cerium Tandem Nanozymes with Elaborately Regulated Multi-Enzymatic Activities for Intensive Chemodynamic Therapy.

Adv Mater. 2022-2

[4]
Prediction and Design of Nanozymes using Explainable Machine Learning.

Adv Mater. 2022-7

[5]
AI-Powered Knowledge Base Enables Transparent Prediction of Nanozyme Multiple Catalytic Activity.

J Phys Chem Lett. 2024-6-6

[6]
Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications.

Small. 2022-9

[7]
Efficient Machine-Learning-Aided Screening of Hydrogen Adsorption on Bimetallic Nanoclusters.

ACS Comb Sci. 2020-12-14

[8]
Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.

Acta Biomater. 2021-11

[9]
Single-Atom Nanozyme with Asymmetric Electron Distribution for Tumor Catalytic Therapy by Disrupting Tumor Redox and Energy Metabolism Homeostasis.

Adv Mater. 2023-3

[10]
Plasma-Assisted Controllable Doping of Nitrogen into MoS Nanosheets as Efficient Nanozymes with Enhanced Peroxidase-Like Catalysis Activity.

ACS Appl Mater Interfaces. 2020-4-15

引用本文的文献

[1]
A bioinspired sulfur-Fe-heme nanozyme with selective peroxidase-like activity for enhanced tumor chemotherapy.

Nat Commun. 2024-12-5

[2]
Nonmetal Doping Modulates Fe Single-Atom Catalysts for Enhancement in Peroxidase Mimicking via Symmetry Disruption, Distortion, and Charge Transfer.

ACS Omega. 2024-7-29

[3]
Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes.

Nat Protoc. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索