文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自我指导:一种用于训练自监督U-Net以进行生物人工胶囊分割少样本学习的新深度学习管道。

Self-mentoring: A new deep learning pipeline to train a self-supervised U-net for few-shot learning of bio-artificial capsule segmentation.

作者信息

Deleruyelle Arnaud, Versari Cristian, Klein John

机构信息

University Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France.

出版信息

Comput Biol Med. 2023 Jan;152:106454. doi: 10.1016/j.compbiomed.2022.106454. Epub 2022 Dec 22.


DOI:10.1016/j.compbiomed.2022.106454
PMID:36566624
Abstract

BACKGROUND: Accurate segmentation of microscopic structures such as bio-artificial capsules in microscopy imaging is a prerequisite to the computer-aided understanding of important biomechanical phenomenons. State-of-the-art segmentation performances are achieved by deep neural networks and related data-driven approaches. Training these networks from only a few annotated examples is challenging while producing manually annotated images that provide supervision is tedious. METHOD: Recently, self-supervision, i.e. designing a neural pipeline providing synthetic or indirect supervision, has proved to significantly increase generalization performances of models trained on few shots. The objective of this paper is to introduce one such neural pipeline in the context of micro-capsule image segmentation. Our method leverages the rather simple content of these images so that a trainee network can be mentored by a referee network which has been previously trained on synthetically generated pairs of corrupted/correct region masks. RESULTS: Challenging experimental setups are investigated. They involve from only 3 to 10 annotated images along with moderately large amounts of unannotated images. In a bio-artificial capsule dataset, our approach consistently and drastically improves accuracy. We also show that the learnt referee network is transferable to another Glioblastoma cell dataset and that it can be efficiently coupled with data augmentation strategies. CONCLUSIONS: Experimental results show that very significant accuracy increments are obtained by the proposed pipeline, leading to the conclusion that the self-supervision mechanism introduced in this paper has the potential to replace human annotations.

摘要

背景:在显微镜成像中精确分割微观结构(如生物人工胶囊)是计算机辅助理解重要生物力学现象的前提条件。最先进的分割性能是通过深度神经网络和相关数据驱动方法实现的。仅从少量带注释的示例中训练这些网络具有挑战性,而生成提供监督的手动注释图像又很繁琐。 方法:最近,自我监督,即设计一个提供合成或间接监督的神经管道,已被证明能显著提高在少量样本上训练的模型的泛化性能。本文的目的是在微胶囊图像分割的背景下引入这样一种神经管道。我们的方法利用了这些图像相当简单的内容,以便一个训练网络可以由一个裁判网络指导,该裁判网络先前已在合成生成的成对损坏/正确区域掩码上进行了训练。 结果:研究了具有挑战性的实验设置。它们仅涉及3到10张带注释的图像以及适量较大数量的未注释图像。在一个生物人工胶囊数据集中,我们提出的方法持续且显著地提高了准确率。我们还表明,学习到的裁判网络可以转移到另一个胶质母细胞瘤细胞数据集,并且它可以有效地与数据增强策略相结合。 结论:实验结果表明,所提出的管道获得了非常显著的准确率提升,从而得出本文引入的自我监督机制有潜力取代人工注释的结论。

相似文献

[1]
Self-mentoring: A new deep learning pipeline to train a self-supervised U-net for few-shot learning of bio-artificial capsule segmentation.

Comput Biol Med. 2023-1

[2]
Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.

Comput Methods Programs Biomed. 2020-8

[3]
Attentional adversarial training for few-shot medical image segmentation without annotations.

PLoS One. 2024

[4]
Image generation by GAN and style transfer for agar plate image segmentation.

Comput Methods Programs Biomed. 2020-2

[5]
Graph-enhanced U-Net for semi-supervised segmentation of pancreas from abdomen CT scan.

Phys Med Biol. 2022-7-27

[6]
Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.

Comput Methods Programs Biomed. 2020-6

[7]
Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.

Med Image Anal. 2021-10

[8]
Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.

Comput Methods Programs Biomed. 2020-6

[9]
'Squeeze & excite' guided few-shot segmentation of volumetric images.

Med Image Anal. 2019-10-13

[10]
A conventional-to-spectral CT image translation augmentation workflow for robust contrast injection-independent organ segmentation.

Med Phys. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索