Suppr超能文献

基于图增强 U-Net 的腹部 CT 扫描胰腺半自动分割

Graph-enhanced U-Net for semi-supervised segmentation of pancreas from abdomen CT scan.

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China.

Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, People's Republic of China.

出版信息

Phys Med Biol. 2022 Jul 27;67(15). doi: 10.1088/1361-6560/ac80e4.

Abstract

. Accurate segmentation of the pancreas from abdomen CT scans is highly desired for diagnosis and treatment follow-up of pancreatic diseases. However, the task is challenged by large anatomical variations, low soft-tissue contrast, and the difficulty in acquiring a large set of annotated volumetric images for training. To overcome these problems, we propose a new segmentation network and a semi-supervised learning framework to alleviate the lack of annotated images and improve the accuracy of segmentation.In this paper, we propose a novel graph-enhanced pancreas segmentation network (GEPS-Net), and incorporate it into a semi-supervised learning framework based on iterative uncertainty-guided pseudo-label refinement. Our GEPS-Net plugs a graph enhancement module on top of the CNN-based U-Net to focus on the spatial relationship information. For semi-supervised learning, we introduce an iterative uncertainty-guided refinement process to update pseudo labels by removing low-quality and incorrect regions.Our method was evaluated by a public dataset with four-fold cross-validation and achieved the DC of 84.22%, improving 5.78% compared to the baseline. Further, the overall performance of our proposed method was the best compared with other semi-supervised methods trained with only 6 or 12 labeled volumes.The proposed method improved the segmentation performance of the pancreas in CT images under the semi-supervised setting. It will assist doctors in early screening and making accurate diagnoses as well as adaptive radiotherapy.

摘要

. 从腹部 CT 扫描中准确分割胰腺,对于胰腺疾病的诊断和治疗随访非常重要。然而,由于存在较大的解剖结构变异、软组织对比度低以及获取大量标注容积图像进行训练的困难,这一任务具有挑战性。为了解决这些问题,我们提出了一种新的分割网络和半监督学习框架,以减轻缺乏标注图像的问题,并提高分割的准确性。

在本文中,我们提出了一种新的基于图增强的胰腺分割网络(GEPS-Net),并将其纳入基于迭代不确定性引导伪标签细化的半监督学习框架中。我们的 GEPS-Net 在基于 CNN 的 U-Net 之上插入了一个图增强模块,以关注空间关系信息。对于半监督学习,我们引入了一个迭代不确定性引导细化过程,通过去除低质量和错误的区域来更新伪标签。

我们的方法通过四折交叉验证在公共数据集上进行了评估,DC 达到了 84.22%,与基线相比提高了 5.78%。此外,与仅使用 6 或 12 个标注体积进行训练的其他半监督方法相比,我们提出的方法的整体性能最佳。

所提出的方法提高了 CT 图像中胰腺在半监督设置下的分割性能。它将有助于医生进行早期筛查和准确诊断以及自适应放疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验