文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于注意的对抗训练在无需标注数据情况下的小样本医学图像分割。

Attentional adversarial training for few-shot medical image segmentation without annotations.

机构信息

School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China.

Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China.

出版信息

PLoS One. 2024 May 2;19(5):e0298227. doi: 10.1371/journal.pone.0298227. eCollection 2024.


DOI:10.1371/journal.pone.0298227
PMID:38696503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11065257/
Abstract

Medical image segmentation is a critical application that plays a significant role in clinical research. Despite the fact that many deep neural networks have achieved quite high accuracy in the field of medical image segmentation, there is still a scarcity of annotated labels, making it difficult to train a robust and generalized model. Few-shot learning has the potential to predict new classes that are unseen in training with a few annotations. In this study, a novel few-shot semantic segmentation framework named prototype-based generative adversarial network (PG-Net) is proposed for medical image segmentation without annotations. The proposed PG-Net consists of two subnetworks: the prototype-based segmentation network (P-Net) and the guided evaluation network (G-Net). On one hand, the P-Net as a generator focuses on extracting multi-scale features and local spatial information in order to produce refined predictions with discriminative context between foreground and background. On the other hand, the G-Net as a discriminator, which employs an attention mechanism, further distills the relation knowledge between support and query, and contributes to P-Net producing segmentation masks of query with more similar distributions as support. Hence, the PG-Net can enhance segmentation quality by an adversarial training strategy. Compared to the state-of-the-art (SOTA) few-shot segmentation methods, comparative experiments demonstrate that the proposed PG-Net provides noticeably more robust and prominent generalization ability on different medical image modality datasets, including an abdominal Computed Tomography (CT) dataset and an abdominal Magnetic Resonance Imaging (MRI) dataset.

摘要

医学图像分割是一个关键的应用,在临床研究中起着重要的作用。尽管许多深度神经网络在医学图像分割领域已经取得了相当高的精度,但仍然缺乏标注标签,因此很难训练出一个强大且通用的模型。少样本学习有可能在只有少量标注的情况下预测新的训练中未见过的类别。在这项研究中,提出了一种名为基于原型生成对抗网络(PG-Net)的新型少样本语义分割框架,用于无标注的医学图像分割。所提出的 PG-Net 由两个子网组成:基于原型的分割网络(P-Net)和引导评估网络(G-Net)。一方面,P-Net 作为生成器,专注于提取多尺度特征和局部空间信息,以便在前景和背景之间产生具有判别上下文的精细预测。另一方面,G-Net 作为鉴别器,采用注意力机制,进一步提炼支持和查询之间的关系知识,并有助于 P-Net 生成与支持更相似分布的查询的分割掩模。因此,PG-Net 可以通过对抗训练策略提高分割质量。与最先进的(SOTA)少样本分割方法相比,对比实验表明,所提出的 PG-Net 在不同的医学图像模态数据集上提供了更稳健和突出的泛化能力,包括腹部 CT 数据集和腹部 MRI 数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/17d548fd5ee4/pone.0298227.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/4d219da14c25/pone.0298227.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/4620043d41bc/pone.0298227.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/4f13de310214/pone.0298227.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/2ea5480a61b4/pone.0298227.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/17d548fd5ee4/pone.0298227.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/4d219da14c25/pone.0298227.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/4620043d41bc/pone.0298227.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/4f13de310214/pone.0298227.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/2ea5480a61b4/pone.0298227.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1181/11065257/17d548fd5ee4/pone.0298227.g005.jpg

相似文献

[1]
Attentional adversarial training for few-shot medical image segmentation without annotations.

PLoS One. 2024

[2]
Generative multi-adversarial network for striking the right balance in abdominal image segmentation.

Int J Comput Assist Radiol Surg. 2020-11

[3]
Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.

Med Phys. 2022-9

[4]
SUSAN: segment unannotated image structure using adversarial network.

Magn Reson Med. 2018-12-10

[5]
Self-Supervised Learning for Few-Shot Medical Image Segmentation.

IEEE Trans Med Imaging. 2022-7

[6]
Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.

Med Phys. 2019-8-20

[7]
Multi-Modal Brain Tumor Data Completion Based on Reconstruction Consistency Loss.

J Digit Imaging. 2023-8

[8]
A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.

Med Phys. 2023-3

[9]
Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.

Int J Comput Assist Radiol Surg. 2023-2

[10]
Image generation by GAN and style transfer for agar plate image segmentation.

Comput Methods Programs Biomed. 2020-2

引用本文的文献

[1]
FSS-ULivR: a clinically-inspired few-shot segmentation framework for liver imaging using unified representations and attention mechanisms.

J Cancer Res Clin Oncol. 2025-7-17

本文引用的文献

[1]
WS-MTST: Weakly Supervised Multi-Label Brain Tumor Segmentation With Transformers.

IEEE J Biomed Health Inform. 2023-12

[2]
Few-shot biomedical image segmentation using diffusion models: Beyond image generation.

Comput Methods Programs Biomed. 2023-12

[3]
One-shot segmentation of novel white matter tracts via extensive data augmentation and adaptive knowledge transfer.

Med Image Anal. 2023-12

[4]
Prototypical few-shot segmentation for cross-institution male pelvic structures with spatial registration.

Med Image Anal. 2023-12

[5]
Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches.

Semin Cancer Biol. 2023-11

[6]
ADNet++: A few-shot learning framework for multi-class medical image volume segmentation with uncertainty-guided feature refinement.

Med Image Anal. 2023-10

[7]
Learning what and where to segment: A new perspective on medical image few-shot segmentation.

Med Image Anal. 2023-7

[8]
Robust Prototypical Few-Shot Organ Segmentation With Regularized Neural-ODEs.

IEEE Trans Med Imaging. 2023-9

[9]
Lesion-Decoupling-Based Segmentation With Large-Scale Colon and Esophageal Datasets for Early Cancer Diagnosis.

IEEE Trans Neural Netw Learn Syst. 2024-8

[10]
Dual Consistency Enabled Weakly and Semi-Supervised Optic Disc and Cup Segmentation With Dual Adaptive Graph Convolutional Networks.

IEEE Trans Med Imaging. 2023-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索