Chen Jing, Jiang Yitao, Yang Keen, Ye Xiuqin, Cui Chen, Shi Siyuan, Wu Huaiyu, Tian Hongtian, Song Di, Yao Jincao, Wang Liping, Huang Sijing, Xu Jinfeng, Xu Dong, Dong Fajin
Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical School of Medicine, Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong 518020, China.
Research and Development Department, Microport Prophecy, Shanghai 201203, China.
iScience. 2022 Dec 5;26(1):105692. doi: 10.1016/j.isci.2022.105692. eCollection 2023 Jan 20.
The research of AI-assisted breast diagnosis has primarily been based on static images. It is unclear whether it represents the best diagnosis image.To explore the method of capturing complementary responsible frames from breast ultrasound screening by using artificial intelligence. We used feature entropy breast network (FEBrNet) to select responsible frames from breast ultrasound screenings and compared the diagnostic performance of AI models based on FEBrNet-recommended frames, physician-selected frames, 5-frame interval-selected frames, all frames of video, as well as that of ultrasound and mammography specialists. The AUROC of AI model based on FEBrNet-recommended frames outperformed other frame set based AI models, as well as ultrasound and mammography physicians, indicating that FEBrNet can reach level of medical specialists in frame selection.FEBrNet model can extract video responsible frames for breast nodule diagnosis, whose performance is equivalent to the doctors selected responsible frames.
人工智能辅助乳腺诊断的研究主要基于静态图像。目前尚不清楚它是否代表最佳诊断图像。为了探索利用人工智能从乳腺超声筛查中捕获互补责任帧的方法。我们使用特征熵乳腺网络(FEBrNet)从乳腺超声筛查中选择责任帧,并比较了基于FEBrNet推荐帧、医生选择帧、5帧间隔选择帧、视频所有帧的人工智能模型以及超声和乳腺摄影专家的诊断性能。基于FEBrNet推荐帧的人工智能模型的受试者工作特征曲线下面积(AUROC)优于其他基于帧集的人工智能模型以及超声和乳腺摄影医生,这表明FEBrNet在帧选择方面可以达到医学专家的水平。FEBrNet模型可以提取用于乳腺结节诊断的视频责任帧,其性能与医生选择的责任帧相当。