Wu Linghu, Zhou Yuli, Liu Mengmeng, Huang Sijing, Su Youhuan, Lai Xiaoshu, Bai Song, Yang Keen, Jiang Yitao, Cui Chen, Shi Siyuan, Xu Jinfeng, Xu Nan, Dong Fajin
Ultrasound Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
Research and development department, Illuminate, LLC, Shenzhen, Guangdong, 518000, China.
Heliyon. 2024 Sep 19;10(19):e37924. doi: 10.1016/j.heliyon.2024.e37924. eCollection 2024 Oct 15.
Ultrasound examination is a primary method for detecting thyroid lesions in clinical practice. Incorrect ultrasound diagnosis may lead to delayed treatment or unnecessary biopsy punctures. Therefore, our objective is to propose an artificial intelligence model to increase the precision of thyroid ultrasound diagnosis and reduce puncture rates.
We consecutively collected ultrasound recordings from 672 patients with 845 nodules across two Chinese hospitals. This dataset was divided into training, validation, and internal test sets in a ratio of 7:1:2. We constructed and tested six different model variants based on different video feature distillation strategies and whether additional information from ROI (Region of Interest) scales was used. The models' performances were evaluated using the internal test set and an additional external test set containing 126 nodules from a third hospital.
The dual-stream model, which contains both raw-scale and ROI-scale streams with the time dimensional convolution layer, achieved the best performance on both internal and external test sets. On the internal test set, it achieved an AUROC (Area Under Receiver Operating Characteristic Curve) of 0.969 (95 % confidence interval, CI: 0.944-0.993) and an accuracy of 92.6 %, outperforming other variants (AUROC: 0.936-0.955, accuracy: 80.2%-88.3 %) and experienced radiologists (accuracy: 91.9 %). The AUROC of the best model in the external test was 0.931 (95 % CI: 0.890-0.972).
Integrating a dual-stream model with additional ROI scale information and the time dimensional convolution layer can improve performance in diagnosing thyroid ultrasound videos.
超声检查是临床实践中检测甲状腺病变的主要方法。超声诊断错误可能导致治疗延迟或不必要的活检穿刺。因此,我们的目标是提出一种人工智能模型,以提高甲状腺超声诊断的准确性并降低穿刺率。
我们连续收集了来自两家中国医院的672例患者的845个结节的超声记录。该数据集按照7:1:2的比例分为训练集、验证集和内部测试集。我们基于不同的视频特征提取策略以及是否使用来自感兴趣区域(ROI)尺度的附加信息,构建并测试了六种不同的模型变体。使用内部测试集和包含来自第三家医院的126个结节的附加外部测试集对模型的性能进行评估。
双流模型,即同时包含原始尺度和ROI尺度流以及时间维度卷积层的模型,在内部和外部测试集上均表现最佳。在内部测试集上,其受试者操作特征曲线下面积(AUROC)为0.969(95%置信区间,CI:0.944 - 0.993),准确率为92.6%,优于其他变体(AUROC:0.936 - 0.955,准确率:80.2% - 88.3%)以及经验丰富的放射科医生(准确率:91.9%)。最佳模型在外部测试中的AUROC为0.931(95% CI:0.890 - 0.972)。
将双流模型与附加的ROI尺度信息和时间维度卷积层相结合,可以提高甲状腺超声视频诊断的性能。