Department of Chemical Engineering, The Pennsylvania State University.
Department of Biomedical Engineering, The Pennsylvania State University.
J Vis Exp. 2022 Dec 9(190). doi: 10.3791/64829.
The emergence of granular hydrogel scaffolds (GHS), fabricated via assembling hydrogel microparticles (HMPs), has enabled microporous scaffold formation in situ. Unlike conventional bulk hydrogels, interconnected microscale pores in GHS facilitate degradation-independent cell infiltration as well as oxygen, nutrient, and cellular byproduct transfer. Methacryloyl-modified gelatin (GelMA), a (photo)chemically crosslinkable, protein-based biopolymer containing cell adhesive and biodegradable moieties, has widely been used as a cell-responsive/instructive biomaterial. Converting bulk GelMA to GHS may open a plethora of opportunities for tissue engineering and regeneration. In this article, we demonstrate the procedures of high-throughput GelMA microgel fabrication, conversion to resuspendable dry microgels (micro-aerogels), GHS formation via the chemical assembly of microgels, and granular bioink fabrication for extrusion bioprinting. We show how a sequential physicochemical treatment via cooling and photocrosslinking enables the formation of mechanically robust GHS. When light is inaccessible (e.g., during deep tissue injection), individually crosslinked GelMA HMPs may be bioorthogonally assembled via enzymatic crosslinking using transglutaminases. Finally, three-dimensional (3D) bioprinting of microporous GHS at low HMP packing density is demonstrated via the interfacial self-assembly of heterogeneously charged nanoparticles.
颗粒状水凝胶支架(GHS)的出现,通过组装水凝胶微球(HMPs)实现了微孔支架的原位形成。与传统的块状水凝胶不同,GHS 中的互连微尺度孔有利于降解独立的细胞渗透以及氧气、营养物质和细胞代谢产物的转移。甲基丙烯酰化改性明胶(GelMA)是一种(光)化学交联的、含有细胞黏附性和可生物降解部分的蛋白质基生物聚合物,已广泛用作细胞响应/指导生物材料。将块状 GelMA 转化为 GHS 可能为组织工程和再生开辟了大量机会。在本文中,我们展示了高通量 GelMA 微球的制备、转化为可再悬浮的干微球(微气凝胶)、通过微球的化学组装形成 GHS 以及用于挤出生物打印的颗粒状生物墨水的制备过程。我们展示了如何通过冷却和光交联的顺序物理化学处理来形成机械强度高的 GHS。当光线不可及(例如,在深层组织注射期间)时,单独交联的 GelMA HMP 可以通过使用转谷氨酰胺酶的酶交联进行生物正交组装。最后,通过异质带电纳米粒子的界面自组装演示了低 HMP 堆积密度的微孔 GHS 的三维(3D)生物打印。