Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
Adv Healthc Mater. 2024 Oct;13(25):e2402489. doi: 10.1002/adhm.202402489. Epub 2024 Aug 17.
Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.
颗粒状水凝胶支架(GHS)是通过将水凝胶微球(HMP)紧密接触(包装),然后进行物理和/或化学颗粒间键合形成的。明胶甲基丙烯酰(GelMA)GHS 最近已成为生物医学应用的有前途的平台;然而,对于构建块的包装方式,即物理交联的软 GelMA HMP,如何影响 GHS 的物理(孔微观结构和机械/流变性质)和生物学(体外和体内)特性,人们知之甚少。在这里,通过 GelMA HMP 的外部(离心)力诱导的包装和变形来设计 GHS 的孔微观结构,以调节 GHS 的机械和流变性质以及体外和体内的生物学反应。增加离心力的大小和持续时间会增加 HMP 的变形/包装,降低 GHS 的空隙率和中值孔径,并增加 GHS 的压缩和储能模量。MDA-MB-231 人三阴性乳腺癌腺癌细胞在松散包装的 GHS 中在 GelMA HMP 表面扩散和平坦化,而在高度包装的 GHS 中由于空间限制,它们采用细长形态。通过在 GHS 中培养未经处理或 blebbistatin 处理的细胞,显示了非肌肉肌球蛋白 II 驱动的收缩性对细胞形态的影响。体内皮下植入小鼠证实,在具有较低包装密度的 GHS 中,内皮细胞、成纤维细胞和巨噬细胞的浸润明显更高,这与体外细胞迁移结果一致。这些结果表明,GelMA GHS 的包装状态可使体外细胞反应和体内组织反应得到工程化设计。这项研究是在组织工程和再生中标准化和工程化 GelMA GHS 微观结构的重要一步。