Suppr超能文献

评估生存结局预测模型的性能和临床实用性:Cox 比例风险模型的实用指南。

Assessing Performance and Clinical Usefulness in Prediction Models With Survival Outcomes: Practical Guidance for Cox Proportional Hazards Models.

机构信息

Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom (D.J.M.).

Netherlands Cancer Institute, Amsterdam, the Netherlands, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands, and Institute of Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy (D.G.).

出版信息

Ann Intern Med. 2023 Jan;176(1):105-114. doi: 10.7326/M22-0844. Epub 2022 Dec 27.

Abstract

Risk prediction models need thorough validation to assess their performance. Validation of models for survival outcomes poses challenges due to the censoring of observations and the varying time horizon at which predictions can be made. This article describes measures to evaluate predictions and the potential improvement in decision making from survival models based on Cox proportional hazards regression. As a motivating case study, the authors consider the prediction of the composite outcome of recurrence or death (the "event") in patients with breast cancer after surgery. They developed a simple Cox regression model with 3 predictors, as in the Nottingham Prognostic Index, in 2982 women (1275 events over 5 years of follow-up) and externally validated this model in 686 women (285 events over 5 years). Improvement in performance was assessed after the addition of progesterone receptor as a prognostic biomarker. The model predictions can be evaluated across the full range of observed follow-up times or for the event occurring by the end of a fixed time horizon of interest. The authors first discuss recommended statistical measures that evaluate model performance in terms of discrimination, calibration, or overall performance. Further, they evaluate the potential clinical utility of the model to support clinical decision making according to a net benefit measure. They provide SAS and R code to illustrate internal and external validation. The authors recommend the proposed set of performance measures for transparent reporting of the validity of predictions from survival models.

摘要

风险预测模型需要进行彻底的验证,以评估其性能。由于观察结果的删失和可以进行预测的时间范围不同,因此生存结局模型的验证存在挑战。本文介绍了评估预测的措施,以及基于 Cox 比例风险回归的生存模型在决策方面的潜在改进。作为一个激励性的案例研究,作者考虑了手术后乳腺癌患者复发或死亡(“事件”)复合结局的预测。他们在 2982 名女性(5 年随访期间有 1275 例事件)中开发了一个简单的 Cox 回归模型,包含 3 个预测因子,与诺丁汉预后指数相同,并在 686 名女性(5 年随访期间有 285 例事件)中对该模型进行了外部验证。在添加孕激素受体作为预后生物标志物后,评估了性能的提高。可以在整个观察随访时间范围内或在固定感兴趣时间范围内的事件结束时评估模型预测。作者首先讨论了推荐的统计措施,这些措施根据判别、校准或整体性能来评估模型性能。此外,他们根据净收益衡量标准评估了该模型在支持临床决策方面的潜在临床实用性。他们提供了 SAS 和 R 代码来说明内部和外部验证。作者建议使用拟议的性能评估措施集,以透明地报告生存模型预测的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验