Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States.
MD-PhD Program, Yale School of Medicine, New Haven, CT, United States.
Cereb Cortex. 2023 May 9;33(10):6320-6334. doi: 10.1093/cercor/bhac506.
Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.
注意障碍是精神病学中许多疾病的重要症状,包括自闭症等神经多样性疾病。需要更好地了解注意力的神经生物学相关性,并在医疗保健环境中利用这些发现。然而,目前尚不清楚是否有可能在包括神经多样性疾病参与者的样本中构建注意力状态的维度预测模型。在这里,我们使用 5 个数据集来识别和验证基于功能连接组的注意力标记物。在数据集 1 中,我们使用基于连接组的预测建模,并观察到在包括神经多样性疾病参与者的青年样本中对扫描内持续注意力任务的表现进行成功预测。这些预测不受诸如头部运动等混杂因素的驱动。在数据集 2 中,我们发现数据集 1 中定义的注意力网络模型可以推广到预测在执行相同注意力任务的另一组神经典型参与者的扫描内注意力。在数据集 3-5 中,我们使用基于连接组的识别和纵向扫描来探测个体参与者在数月至数年期间注意力网络的稳定性。我们的研究结果有助于阐明年轻人注意力状态的大脑相关性,并支持进一步开发其他临床相关表型的预测性维度模型。