Suppr超能文献

全脑功能连接可预测临床前阿尔茨海默病患者的区域tau正电子发射断层扫描结果。

Whole-brain functional connectivity predicts regional tau PET in preclinical Alzheimer's disease.

作者信息

Abuwarda Hamid, Trainer Anne, Horien Corey, Shen Xilin, Moret Sophia, Ju Suyeon, Constable R Todd, Fredericks Carolyn

机构信息

Department of Neurology, Yale School of Medicine, New Haven, CT 06519, USA.

Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06519, USA.

出版信息

Brain Commun. 2025 Jul 15;7(4):fcaf274. doi: 10.1093/braincomms/fcaf274. eCollection 2025.

Abstract

Preclinical Alzheimer's disease, characterized by the abnormal accumulation of amyloid-β prior to cognitive symptoms, presents a critical opportunity for early intervention. Past work has described functional connectivity (FC) changes in preclinical Alzheimer's disease, yet the predictive between the functional connectome and Alzheimer's disease pathology during this window remains unexplored. We applied connectome-based predictive modelling to investigate the ability of resting-state whole-brain FC to predict tau (18F-flortaucipir) and amyloid-β (18F-florbetapir) PET binding in preclinical Alzheimer's disease (A4, = 342 amyloid-β-positive, age 65-85). Separate models were developed to predict amyloid PET signal in the posterior cingulate, precuneus, and cortical composite regions, and to predict tau PET signal in each of 14 cortical regions that demonstrated meaningful tau elevation as identified through a Gaussian mixture model approach. Model performance was assessed using a Spearman's correlation between predicted and observed PET binding standard uptake value ratios. We assessed the validity of significant models by applying them to an external dataset and visualized the underlying connectivity that was positively and negatively correlated to regional tau. We found that whole-brain FC predicts regional tau PET, outperforming FC-amyloid-β PET models. The best-performing tau models were for regions affected in Braak stage IV-V regions (posterior cingulate, precuneus, lateral occipital cortex, middle temporal, inferior temporal, and banks of the superior temporal sulcus), while models for regions of earlier tau pathology (entorhinal, parahippocampal, fusiform, and amygdala) performed poorly. Importantly, FC-based models predicted tau PET signal in the Alzheimer's Disease Neuroimaging Intitative-3 dataset (amyloid-β-positive, = 211, age 55-90) in tau-elevated but not tau-negative individuals. For the posterior cingulate tau model, the most accurate model in A4, the predictive edges positively correlated with posterior cingulate tau predominantly came from nodes within temporal, limbic, and cerebellar regions. The most predictive edges negatively associated with tau were from nodes of heteromodal association areas, particularly within the prefrontal and parietal cortices. These findings reveal that whole-brain FC meaningfully predicts tau PET in preclinical Alzheimer's disease, particularly in regions affected in advanced disease, and are relevant across the Alzheimer's disease clinical spectrum in individuals with elevated tau PET burden. This suggests that functional connectivity, likely in conjunction with other factors, may play a key role in early processes that facilitate later-stage tau spread. These models highlight the potential of the functional connectome for the early detection and monitoring of Alzheimer's disease pathology, especially in later-stage target regions.

摘要

临床前阿尔茨海默病以认知症状出现之前β淀粉样蛋白的异常积聚为特征,为早期干预提供了关键契机。过去的研究描述了临床前阿尔茨海默病中的功能连接(FC)变化,但在此阶段功能连接组与阿尔茨海默病病理之间的预测关系仍未得到探索。我们应用基于连接组的预测模型来研究静息态全脑FC预测临床前阿尔茨海默病(A4队列,n = 342名β淀粉样蛋白阳性,年龄65 - 85岁)中tau(18F-氟代tau蛋白显像剂)和β淀粉样蛋白(18F-氟代贝他匹)PET结合的能力。我们开发了单独的模型来预测扣带回后部、楔前叶和皮质复合区域的淀粉样蛋白PET信号,以及通过高斯混合模型方法确定的14个皮质区域中每个区域的tau PET信号,这些区域显示出有意义的tau升高。使用预测的和观察到的PET结合标准摄取值比率之间的Spearman相关性评估模型性能。我们通过将显著模型应用于外部数据集来评估其有效性,并可视化与区域tau呈正相关和负相关的潜在连接。我们发现全脑FC能够预测区域tau PET,其性能优于FC-淀粉样蛋白PET模型。表现最佳的tau模型针对的是Braak分期IV - V期受影响的区域(扣带回后部、楔前叶、枕外侧皮质、颞中回、颞下回和颞上沟岸),而针对早期tau病理区域(内嗅皮质、海马旁回、梭状回和杏仁核)的模型表现较差。重要的是,基于FC的模型在阿尔茨海默病神经影像倡议-3数据集(β淀粉样蛋白阳性,n = 211,年龄55 - 90岁)中能够预测tau升高但非tau阴性个体的tau PET信号。对于扣带回后部tau模型,这是A4队列中最准确的模型,与扣带回后部tau呈正相关的最具预测性的边缘主要来自颞叶、边缘叶和小脑区域内的节点。与tau呈负相关的最具预测性的边缘来自异模态联合区域的节点,特别是前额叶和顶叶皮质内的节点。这些发现表明,全脑FC能够在临床前阿尔茨海默病中有效预测tau PET,尤其是在晚期疾病受影响的区域,并且在tau PET负荷升高的个体的整个阿尔茨海默病临床谱中都具有相关性。这表明功能连接可能与其他因素一起,在促进后期tau扩散的早期过程中发挥关键作用。这些模型突出了功能连接组在阿尔茨海默病病理早期检测和监测中的潜力,特别是在晚期目标区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0caf/12305425/ff32d66da120/fcaf274_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验