Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Adv Mater. 2023 Apr;35(16):e2209798. doi: 10.1002/adma.202209798. Epub 2023 Mar 16.
Topological spin textures are of great interest for both fundamental physics and applications in spintronics. The Dzyaloshinskii-Moriya interaction underpins the formation of single-twisted magnetic solitons or multi-twisted magnetic skyrmions in magnetic materials with different crystallographic symmetries. However, topological transitions between these two kinds of topological objects have not been verified experimentally. Here, the direct observation of transformations from a chiral soliton lattice (CSL) to magnetic skyrmions in a nanostripe of the monoaxial chiral magnet CrNb S using Lorentz transmission electron microscopy is reported. In the presence of an external magnetic field, helical spin structures first transform into CSLs and then evolve into isolated elongated magnetic skyrmions. The detailed spin textures of the elongated magnetic skyrmions are resolved using off-axis electron holography and are shown to comprise two merons, which enclose their ends and have unit total topological charge. Magnetic dipolar interactions are shown to play a key role in the magnetic soliton-skyrmion transformation, which depends sensitively on nanostripe width. The findings here, which are consistent with micromagnetic simulations, enrich the family of topological magnetic states and their transitions and promise to further stimulate the exploration of their emergent electromagnetic properties.
拓扑自旋纹理在基础物理学和自旋电子学应用中都具有重要意义。Dzyaloshinskii-Moriya 相互作用是在具有不同晶体对称性的磁性材料中形成单一扭曲磁孤子或多扭曲磁斯格明子的基础。然而,这两种拓扑物体之间的拓扑转变尚未在实验中得到验证。在这里,我们使用洛伦兹透射电子显微镜报告了在单轴手性磁体 CrNbS 的纳米条中直接观察到从手性孤子晶格(CSL)到磁斯格明子的转变。在外磁场存在的情况下,螺旋自旋结构首先转变为 CSL,然后进一步演变成孤立的拉长磁斯格明子。使用离轴电子全息术解析了拉长磁斯格明子的详细自旋纹理,并表明它们由两个梅尔(meron)组成,梅尔包围着它们的末端,具有单位总拓扑电荷。磁偶极相互作用被证明在手性磁孤子-斯格明子转变中起着关键作用,这一转变对纳米条的宽度非常敏感。这些与微磁模拟一致的发现丰富了拓扑磁态及其转变的家族,并有望进一步激发对其新兴电磁性质的探索。