Wu Kai, Zhao Yuelei, Hao Hongyuan, Yang Sheng, Li Shuang, Liu Qingfang, Zhang Senfu, Zhang Xixiang, Åkerman Johan, Xi Li, Zhang Ying, Cai Kaiming, Zhou Yan
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
School of Physical Science and Technology, Lanzhou University, Lanzhou, China.
Nat Commun. 2024 Dec 2;15(1):10463. doi: 10.1038/s41467-024-54851-5.
This study demonstrates the controllable switching of skyrmion helicity using spin-orbit torque, enhanced by thermal effects. Electric current pulses applied to a [Pt/Co]/Ru/[Co/Pt] multilayer stripe drive skyrmions in a direction opposite to the current flow. Continuous pulsing results in an unexpected reversal of skyrmion motion. Micromagnetic simulations reveal that skyrmions in the upper and lower ferromagnetic layers exhibit distinct helicities, forming a hybrid synthetic skyrmion. The helicity switch of this hybrid structure accounts for the motion reversal. This study introduces innovative helicity control methods, advancing spintronic device applications, including data storage and quantum computing based on skyrmion helicity.
本研究展示了利用自旋轨道扭矩对斯格明子螺旋度进行可控切换,热效应增强了这种切换。施加到[Pt/Co]/Ru/[Co/Pt]多层条带上的电流脉冲使斯格明子沿与电流流动方向相反的方向移动。连续脉冲导致斯格明子运动出现意外反转。微磁模拟表明,上下铁磁层中的斯格明子表现出不同的螺旋度,形成了一种混合合成斯格明子。这种混合结构的螺旋度切换解释了运动反转现象。本研究引入了创新的螺旋度控制方法,推动了自旋电子器件的应用,包括基于斯格明子螺旋度的数据存储和量子计算。