Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan.
Department of Molecular Life Science, Biomedical Informatics Laboratory, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2210283120. doi: 10.1073/pnas.2210283120. Epub 2022 Dec 28.
Single-cell whole-transcriptome analysis is the gold standard approach to identifying molecularly defined cell phenotypes. However, this approach cannot be used for dynamics measurements such as live-cell imaging. Here, we developed a multifunctional robot, the automated live imaging and cell picking system (ALPS) and used it to perform single-cell RNA sequencing for microscopically observed cells with multiple imaging modes. Using robotically obtained data that linked cell images and the whole transcriptome, we successfully predicted transcriptome-defined cell phenotypes in a noninvasive manner using cell image-based deep learning. This noninvasive approach opens a window to determine the live-cell whole transcriptome in real time. Moreover, this work, which is based on a data-driven approach, is a proof of concept for determining the transcriptome-defined phenotypes (i.e., not relying on specific genes) of any cell from cell images using a model trained on linked datasets.
单细胞全转录组分析是鉴定分子定义细胞表型的金标准方法。然而,这种方法不能用于动态测量,如活细胞成像。在这里,我们开发了一种多功能机器人,即自动活细胞成像和细胞挑选系统 (ALPS),并使用它对具有多种成像模式的显微镜观察细胞进行单细胞 RNA 测序。使用机器人获取的将细胞图像和整个转录组联系起来的数据,我们成功地使用基于细胞图像的深度学习以非侵入性的方式预测了转录组定义的细胞表型。这种非侵入性方法为实时确定活细胞的全转录组开辟了一扇窗。此外,这项基于数据驱动方法的工作是使用基于链接数据集训练的模型从细胞图像确定转录组定义的表型(即不依赖于特定基因)的概念验证。