文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一刀切并不适合所有人:精神病学中基于大脑的预测建模的方法学考虑。

One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry.

机构信息

Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.

Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.

出版信息

Biol Psychiatry. 2023 Apr 15;93(8):717-728. doi: 10.1016/j.biopsych.2022.09.024. Epub 2022 Sep 29.


DOI:10.1016/j.biopsych.2022.09.024
PMID:36577634
Abstract

Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.

摘要

精神疾病在性质上具有异质性。没有一种疾病会在不同个体身上以完全相同的方式表现出来,也没有两个具有相同诊断的患者表现出完全相同的症状特征。在过去的几十年中,对体内神经影像学数据的群体水平分析,推动了我们对精神疾病神经生物学的理解取得了根本性的进展。最近,计算资源和大型公共可用数据集的获取,以及预测建模和精准医疗方法的兴起,促进了个体水平上的精神疾病研究。数据驱动的机器学习分析可用于识别与疾病相关的生物学亚型,预测个体的症状特征,并推荐个性化的治疗干预措施。然而,在开发这些预测模型时,必须仔细考虑方法学选择,以确保准确、稳健和可解释的结果。算法、神经影像学模态和状态、数据转换、表型、分割、样本量和我们正在研究的人群等方面的选择,都会影响模型的性能。在这里,我们回顾了基于神经影像学的机器学习模型在研究精神疾病中的应用,并讨论了不同方法学选择对模型性能的影响。了解这些影响对于在精神病学中正确实施预测模型至关重要,这将有助于更准确的诊断、预后和治疗。

相似文献

[1]
One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry.

Biol Psychiatry. 2023-4-15

[2]
Predicting the future of neuroimaging predictive models in mental health.

Mol Psychiatry. 2022-8

[3]
Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2018-4-22

[4]
Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2020-8

[5]
Translational machine learning for psychiatric neuroimaging.

Prog Neuropsychopharmacol Biol Psychiatry. 2018-10-2

[6]
Recommendations for machine learning benchmarks in neuroimaging.

Neuroimage. 2022-8-15

[7]
Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry.

Neuroimage. 2024-8-1

[8]
Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2020-8

[9]
Computational approaches and machine learning for individual-level treatment predictions.

Psychopharmacology (Berl). 2021-5

[10]
Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches.

Int J Mol Sci. 2020-2-1

引用本文的文献

[1]
Comparing and Scaling fMRI Features for Brain-Behavior Prediction.

ArXiv. 2025-7-28

[2]
Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging.

Nat Commun. 2025-7-1

[3]
Identifying brain functional subtypes and corresponding task performance profiles in autism spectrum disorder.

Mol Psychiatry. 2025-6-20

[4]
Practical AI application in psychiatry: historical review and future directions.

Mol Psychiatry. 2025-6-3

[5]
The history and future of resting-state functional magnetic resonance imaging.

Nature. 2025-5

[6]
Prediction of Verbal Abilities From Brain Connectivity Data Across the Lifespan Using a Machine Learning Approach.

Hum Brain Mapp. 2025-4-1

[7]
Persistent brain network signatures in psychosis: implications for diagnosis, prognosis, and treatment.

Neuropsychopharmacology. 2025-5

[8]
Embracing Model Heterogeneity for Better Brain-Behavior Associations.

Biol Psychiatry Glob Open Sci. 2025-1-15

[9]
Representing Brain-Behavior Associations by Retaining High-Motion Minoritized Youth.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-2-5

[10]
Considering the interconnected nature of social identities in neuroimaging research.

Nat Neurosci. 2025-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索