Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.
Biol Psychiatry. 2023 Apr 15;93(8):717-728. doi: 10.1016/j.biopsych.2022.09.024. Epub 2022 Sep 29.
Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.
精神疾病在性质上具有异质性。没有一种疾病会在不同个体身上以完全相同的方式表现出来,也没有两个具有相同诊断的患者表现出完全相同的症状特征。在过去的几十年中,对体内神经影像学数据的群体水平分析,推动了我们对精神疾病神经生物学的理解取得了根本性的进展。最近,计算资源和大型公共可用数据集的获取,以及预测建模和精准医疗方法的兴起,促进了个体水平上的精神疾病研究。数据驱动的机器学习分析可用于识别与疾病相关的生物学亚型,预测个体的症状特征,并推荐个性化的治疗干预措施。然而,在开发这些预测模型时,必须仔细考虑方法学选择,以确保准确、稳健和可解释的结果。算法、神经影像学模态和状态、数据转换、表型、分割、样本量和我们正在研究的人群等方面的选择,都会影响模型的性能。在这里,我们回顾了基于神经影像学的机器学习模型在研究精神疾病中的应用,并讨论了不同方法学选择对模型性能的影响。了解这些影响对于在精神病学中正确实施预测模型至关重要,这将有助于更准确的诊断、预后和治疗。
Mol Psychiatry. 2022-8
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018-4-22
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020-8
Prog Neuropsychopharmacol Biol Psychiatry. 2018-10-2
Neuroimage. 2022-8-15
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020-8
Psychopharmacology (Berl). 2021-5
Mol Psychiatry. 2025-6-3
Neuropsychopharmacology. 2025-5
Biol Psychiatry Glob Open Sci. 2025-1-15
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-2-5