Suppr超能文献

个体治疗预测的计算方法和机器学习。

Computational approaches and machine learning for individual-level treatment predictions.

机构信息

Laureate Institute for Brain Research, 6655 S Ave Tulsa, Yale, OK, 74136-3326, USA.

Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA.

出版信息

Psychopharmacology (Berl). 2021 May;238(5):1231-1239. doi: 10.1007/s00213-019-05282-4. Epub 2019 May 27.

Abstract

RATIONALE

The impact of neuroscience-based approaches for psychiatry on pragmatic clinical decision-making has been limited. Although neuroscience has provided insights into basic mechanisms of neural function, these insights have not improved the ability to generate better assessments, prognoses, diagnoses, or treatment of psychiatric conditions.

OBJECTIVES

To integrate the emerging findings in machine learning and computational psychiatry to address the question: what measures that are not derived from the patient's self-assessment or the assessment by a trained professional can be used to make more precise predictions about the individual's current state, the individual's future disease trajectory, or the probability to respond to a particular intervention?

RESULTS

Currently, the ability to use individual differences to predict differential outcomes is very modest possibly related to the fact that the effect sizes of interventions are small. There is emerging evidence of genetic and neuroimaging-based heterogeneity of psychiatric disorders, which contributes to imprecise predictions. Although the use of machine learning tools to generate clinically actionable predictions is still in its infancy, these approaches may identify subgroups enabling more precise predictions. In addition, computational psychiatry might provide explanatory disease models based on faulty updating of internal values or beliefs.

CONCLUSIONS

There is a need for larger studies, clinical trials using machine learning, or computational psychiatry model parameters predictions as actionable outcomes, comparing alternative explanatory computational models, and using translational approaches that apply similar paradigms and models in humans and animals.

摘要

背景

基于神经科学的精神科方法对实用临床决策的影响有限。尽管神经科学为神经功能的基本机制提供了一些见解,但这些见解并没有提高生成更好评估、预后、诊断或治疗精神疾病的能力。

目的

整合机器学习和计算精神病学领域的新兴研究成果,以解决以下问题:有哪些不是来自患者自我评估或经过培训的专业人员评估的措施,可以用来更准确地预测个体的当前状态、个体未来的疾病轨迹或对特定干预措施的反应概率?

结果

目前,利用个体差异来预测不同结果的能力非常有限,这可能与干预效果的大小有关。越来越多的证据表明精神疾病存在基于遗传和神经影像学的异质性,这导致预测不准确。尽管使用机器学习工具生成临床可操作的预测仍处于起步阶段,但这些方法可能会识别出能够实现更准确预测的亚组。此外,计算精神病学可能会基于内部价值或信念的错误更新提供解释性疾病模型。

结论

需要进行更大规模的研究、使用机器学习的临床试验,或使用可作为行动结果的计算精神病学模型参数预测,比较替代的解释性计算模型,并使用转化方法在人类和动物中应用类似的范式和模型。

相似文献

1
Computational approaches and machine learning for individual-level treatment predictions.个体治疗预测的计算方法和机器学习。
Psychopharmacology (Berl). 2021 May;238(5):1231-1239. doi: 10.1007/s00213-019-05282-4. Epub 2019 May 27.
2
Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.使用神经影像学和机器学习对精神病学进行个体预后预测。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Sep;3(9):798-808. doi: 10.1016/j.bpsc.2018.04.004. Epub 2018 Apr 22.
3
Machine Learning Approaches for Clinical Psychology and Psychiatry.机器学习在临床心理学和精神病学中的应用。
Annu Rev Clin Psychol. 2018 May 7;14:91-118. doi: 10.1146/annurev-clinpsy-032816-045037. Epub 2018 Jan 29.
4
Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.机器学习与神经影像学:评估其在精神病学中的应用。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798. doi: 10.1016/j.bpsc.2019.11.007. Epub 2019 Nov 27.
5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Translational machine learning for psychiatric neuroimaging.精神神经影像学的转化机器学习。
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:113-121. doi: 10.1016/j.pnpbp.2018.09.014. Epub 2018 Oct 2.
8
Computational neuroimaging strategies for single patient predictions.用于单病例预测的计算神经成像策略。
Neuroimage. 2017 Jan 15;145(Pt B):180-199. doi: 10.1016/j.neuroimage.2016.06.038. Epub 2016 Jun 22.

引用本文的文献

8
Revisiting the seven pillars of RDoC.重新审视 RDoC 的七大支柱。
BMC Med. 2022 Jun 30;20(1):220. doi: 10.1186/s12916-022-02414-0.

本文引用的文献

2
Deep neural networks in psychiatry.精神病学中的深度神经网络。
Mol Psychiatry. 2019 Nov;24(11):1583-1598. doi: 10.1038/s41380-019-0365-9. Epub 2019 Feb 15.
3
Predicting Polygenic Risk of Psychiatric Disorders.预测精神障碍的多基因风险。
Biol Psychiatry. 2019 Jul 15;86(2):97-109. doi: 10.1016/j.biopsych.2018.12.015. Epub 2018 Dec 28.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验