Zhang Xiliang, Hu Yanwen, Zhou Shiwen, Zeng Zepei, Liu Guohua, Lin Haolin, Li Zhen, Chen Zhenqiang, Fu Shenhe
School of Physics and Electronics, Shandong Normal University, Jinan, China.
Department of Optoelectronic Engineering, Jinan University, Guangzhou, China.
Nat Commun. 2025 Jul 11;16(1):6434. doi: 10.1038/s41467-025-61800-3.
High-precision birefringence detection is crucial in many fundamental and applied research fields such as chirality detection, optical clocks and quantum information. Although numerous techniques have been demonstrated to detect birefringence in optical materials, the current detection precision typically remains at 10. Here we introduce a different physical mechanism for birefringence detection in the classical regime, achieving an accuracy at the 10 level. Our technique uses an effective photonic two-level system, dynamically driven by a birefringence-sensitive synthetic magnetic field created by propagation-invariant spin-orbit-coupled structured light in the subwavelength regime. The magnetic field equivalent induces the Rabi oscillation of photonic state, manifested as a nontrivial periodic spin-orbital angular momentum conversion. The ultrahigh detection precision arises from high-birefringence-sensitive topological transition between different oscillatory modes with high Rabi frequencies. The detection precision is tunable by controlling envelope size of structured light at the subwavelength scale. Our technique benefits a broad range of applications involving optical birefringence.
高精度双折射检测在许多基础和应用研究领域至关重要,如手性检测、光钟和量子信息。尽管已经证明了许多技术可用于检测光学材料中的双折射,但目前的检测精度通常仍停留在10的水平。在此,我们介绍一种在经典 regime 中用于双折射检测的不同物理机制,实现了10水平的精度。我们的技术使用一个有效的光子二能级系统,由亚波长 regime 中传播不变的自旋轨道耦合结构光产生的对双折射敏感的合成磁场动态驱动。等效磁场诱导光子态的拉比振荡,表现为非平凡的周期性自旋 - 轨道角动量转换。超高检测精度源于具有高拉比频率的不同振荡模式之间对高双折射敏感的拓扑转变。通过控制亚波长尺度下结构光的包络大小,检测精度是可调的。我们的技术有利于涉及光学双折射的广泛应用。