Suppr超能文献

左心室射血分数和左心室流出道速度时间积分在评估感染性休克心血管功能损害中的作用

The Role of Left Ventricular Ejection Fraction and Left Ventricular Outflow Tract Velocity-Time Integral in Assessing Cardiovascular Impairment in Septic Shock.

作者信息

Spathoulas Konstantinos, Tsolaki Vasiliki, Zakynthinos George E, Karelas Dimitrios, Makris Demosthenes, Zakynthinos Epaminondas, Papanikolaou John

机构信息

Department of Cardiology, General Hospital of Trikala, 42100 Trikala, Greece.

Department of Critical Care, School of Medicine, University of Thessaly, University Hospital of Larissa, 41110 Thessaly, Greece.

出版信息

J Pers Med. 2022 Oct 29;12(11):1786. doi: 10.3390/jpm12111786.

Abstract

Background: the role of echocardiography in septic shock remains controversial, since depressed cardiac afterload may overestimate left ventricular (LV) systolic performance and mask septic cardiomyopathy (SC). We hypothesized that afterload-adjusted LV ejection fraction (LVEF) and LV outflow tract velocity-time integral (VTI) values for given systemic vascular resistances (SVR) could provide novel insights into recognizing and stratifying the severity of SC. Methods: in this observational, monocentric study, we prospectively included 14 mechanically-ventilated patients under septic-shock who all had a Pulse index Continuous Cardiac Output (PiCCO) system in place for hemodynamic monitoring. Echocardiographic and PiCCO longitudinal examinations (71 measurements overall) were performed simultaneously at the onset of septic shock and every 12 h for 60 h overall. Results: VTI-derived stroke volume (SV) and cardiac output (CO) were significantly correlated with PiCCO measurements (r ≥ 0.993, both p < 0.001). LVEF and VTI showed linear and exponential inverse correlation to SVR (R2 = 0.183 vs. 0.507 and p < 0.001 vs. p < 0.001, respectively). The equations LVEF = 86.168 − 0.011 × SVR and VTI = 41.23 × e(−0.0005×SVR) were found to provide “predicted” values for given SVR. Measured to predicted LVEF ratios (for given SVR), the afterload-adjusted LVEF defined the severity of SC (mild ≥ 90%, 80% ≤ moderate < 90% and severe < 80%). Mild SC demonstrated normal/supra-normal LVEF, normal VTI and SVR. Moderate SC showed lower LVEF and SVR, yet increased LV end-diastolic volume (LVEDV), VTI, SV and CO compared with mild SC (all p < 0.05). Severe SC was distinguished from moderate SC by markedly reduced LVEF, LVEDV, VTI, SV, CO and significantly increased SVR (all p < 0.05). LVEF and VTI decreased over time in mild SC, LVEF decreased in moderate SC, and LVEF and VTI increased over time in severe SC (p ≤ 0.038). LVEF and VTI demonstrated significant performance in identifying severe SC [cut-off < 61.5%, area under the curve (AUC) = 1 ± 0.0, sensitivity/specificity = 100/100, p < 0.001 vs. cut-off < 17.9 cm, AUC = 0.882 ± 0.042, sensitivity/specificity = 80/77, p < 0.001, respectively]. VTI but not LVEF demonstrated significant diagnostic performance in identifying both SVR < 800 dynes·s·cm−5 and SVR > 1500 dynes·s·cm−5 (cut-off > 24.46 cm, AUC = 0.889 ± 0.049, sensitivity/specificity = 75/100, p < 0.001; cut-off < 16.8, AUC = 0.0.857 ± 0.082, sensitivity/specificity = 83/86, p = 0.002, respectively).Conclusions: our study suggests that ICU bedside echocardiographic assessment of LVEF, VTI and their adjusted to corresponding SVR values provides valuable insights for the comprehension of SC phenotypes, underlying vasoplegia and cardiac output fluctuations in septic shock.

摘要

背景

超声心动图在感染性休克中的作用仍存在争议,因为心脏后负荷降低可能高估左心室(LV)收缩功能并掩盖感染性心肌病(SC)。我们假设,对于给定的体循环血管阻力(SVR),经后负荷调整的左心室射血分数(LVEF)和左心室流出道速度时间积分(VTI)值可为识别和分层SC的严重程度提供新的见解。方法:在这项观察性单中心研究中,我们前瞻性纳入了14例感染性休克的机械通气患者,所有患者均安装了脉搏指示连续心输出量(PiCCO)系统进行血流动力学监测。在感染性休克发作时同时进行超声心动图和PiCCO纵向检查(共71次测量),并在60小时内每12小时进行一次。结果:VTI衍生的每搏输出量(SV)和心输出量(CO)与PiCCO测量值显著相关(r≥0.993,p均<0.001)。LVEF和VTI与SVR呈线性和指数负相关(R2分别为0.183和0.507,p分别<0.001和p<0.001)。发现方程LVEF = 86.168 - 0.011×SVR和VTI = 41.23×e(-0.0005×SVR)可为给定的SVR提供“预测”值。对于给定的SVR,经后负荷调整的LVEF根据测量值与预测值的比率定义了SC的严重程度(轻度≥90%,80%≤中度<90%,重度<80%)。轻度SC表现为正常/超正常LVEF、正常VTI和SVR。中度SC与轻度SC相比,LVEF和SVR较低,但左心室舒张末期容积(LVEDV)、VTI、SV和CO增加(所有p<0.05)。重度SC与中度SC的区别在于LVEF、LVEDV、VTI、SV、CO显著降低,SVR显著增加(所有p<0.05)。轻度SC中LVEF和VTI随时间下降,中度SC中LVEF下降,重度SC中LVEF和VTI随时间增加(p≤0.038)。LVEF和VTI在识别重度SC方面表现出显著性能[临界值<61.5%,曲线下面积(AUC)=1±0.0,敏感性/特异性=100/100,p<0.001;与临界值<17.9 cm相比,AUC = 0.882±0.042,敏感性/特异性=80/77,p<0.001]分别)。VTI而非LVEF在识别SVR<800达因·秒·厘米-5和SVR>1500达因·秒·厘米-5方面表现出显著诊断性能(临界值>24.46 cm,AUC = 0.889±0.049,敏感性/特异性=75/100,p<图0.001;临界值<16.8 cm,AUC = 0.857±0.082,敏感性/特异性=83/86,p = 0.002,分别)。结论:我们的研究表明,ICU床边超声心动图评估LVEF、VTI及其根据相应SVR值进行的调整,为理解感染性休克中的SC表型、潜在血管麻痹和心输出量波动提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0dc/9696803/cb6f83f00498/jpm-12-01786-g001.jpg

相似文献

2
[Value of pulse indicator continuous cardiac output monitoring of cardiac function in septic shock patients: a prospective study].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015 Jan;27(1):22-7. doi: 10.3760/cma.j.issn.2095-4352.2015.01.006.
3
Diagnosis and Management of Cirrhotic Cardiomyopathy.
J Clin Exp Hepatol. 2022 Jan-Feb;12(1):186-199. doi: 10.1016/j.jceh.2021.08.016. Epub 2021 Aug 21.
4
[Passive leg raising combined with echocardiography could evaluate volume responsiveness in patients with septic shock].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019 May;31(5):619-622. doi: 10.3760/cma.j.issn.2095-4352.2019.05.019.
5
[The relationship between left ventricular artery coupling and left ventricular work and their predictive value on prognosis in septic shock].
Zhonghua Yi Xue Za Zhi. 2022 Dec 20;102(47):3749-3755. doi: 10.3760/cma.j.cn112137-20220620-01351.
6
Echocardiography-Derived Forward Left Ventricular Output Improves Risk Prediction in Systolic Heart Failure.
J Am Soc Echocardiogr. 2024 Oct;37(10):937-946. doi: 10.1016/j.echo.2024.06.008. Epub 2024 Jun 26.
7
[Two-dimensional speckle tracking imaging in assessing the left ventricular systolic function and its dynamic changes of patients with septic shock].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017 Aug;29(8):721-725. doi: 10.3760/cma.j.issn.2095-4352.2017.08.010.
10
Characterization of critically ill patients with septic shock and sepsis-associated cardiomyopathy using cardiovascular MRI.
ESC Heart Fail. 2022 Aug;9(4):2147-2156. doi: 10.1002/ehf2.13938. Epub 2022 May 19.

引用本文的文献

3
Septic Cardiomyopathy: Difficult Definition, Challenging Diagnosis, Unclear Treatment.
J Clin Med. 2025 Feb 4;14(3):986. doi: 10.3390/jcm14030986.
5
Heparanase inhibitor improves clinical study in patients with septic cardiomyopathy.
Front Med (Lausanne). 2024 Aug 7;11:1429109. doi: 10.3389/fmed.2024.1429109. eCollection 2024.
6
Septic cardiomyopathy phenotype in the critically ill may depend on antimicrobial resistance.
J Intensive Med. 2024 Apr 8;4(3):355-361. doi: 10.1016/j.jointm.2023.11.009. eCollection 2024 Jul.
8
Clinical implications of septic cardiomyopathy: A narrative review.
Medicine (Baltimore). 2024 Apr 26;103(17):e37940. doi: 10.1097/MD.0000000000037940.
10
Levosimendan in the Treatment of Patients with Severe Septic Cardiomyopathy.
Life (Basel). 2023 Jun 8;13(6):1346. doi: 10.3390/life13061346.

本文引用的文献

1
Sepsis-Induced Cardiomyopathy: a Comprehensive Review.
Curr Cardiol Rep. 2020 May 6;22(5):35. doi: 10.1007/s11886-020-01277-2.
3
A decade of progress in critical care echocardiography: a narrative review.
Intensive Care Med. 2019 Jun;45(6):770-788. doi: 10.1007/s00134-019-05604-2. Epub 2019 Mar 25.
5
Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms.
J Int Med Res. 2018 Apr;46(4):1303-1310. doi: 10.1177/0300060517743836. Epub 2018 Jan 14.
6
Septic Cardiomyopathy.
Crit Care Med. 2018 Apr;46(4):625-634. doi: 10.1097/CCM.0000000000002851.
8
Left ventricular systolic dysfunction during septic shock: the role of loading conditions.
Intensive Care Med. 2017 May;43(5):633-642. doi: 10.1007/s00134-017-4698-z. Epub 2017 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验