Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902-6000, United States.
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003, United States.
J Chem Theory Comput. 2023 Jan 10;19(1):363-372. doi: 10.1021/acs.jctc.2c01026. Epub 2022 Dec 29.
Biological membranes are fundamental components of living organisms that play an undeniable role in their survival. Molecular dynamics (MD) serves as an essential computational tool for studying biomembranes on molecular and atomistic scales. The status quo of MD simulations of biomembranes studies a nanometer-sized membrane patch periodically extended under periodic boundary conditions (PBCs). In nature, membranes are usually composed of different lipids in their two layers (referred to as leaflets). This compositional asymmetry imposes a fixed ratio of lipid numbers between the two leaflets in a periodically constrained membrane, which needs to be set appropriately. The widely adopted methods of defining a leaflet lipid ratio suffer from the lack of control over the mechanical tension of each leaflet, which could significantly influence research findings. In this study, we investigate the role of membrane-building protocol and the resulting initial stress state on the interaction between small molecules and asymmetric membranes. We model the outer membrane of bacteria using two different building protocols and probe their interactions with the quinolone signal (PQS). Our results show that differential stress could shift the position of free energy minimum for the PQS molecule between the two leaflets of the asymmetric membrane. This work provides critical insights into the relationship between the initial per-leaflet tension and the spontaneous intercalation of PQS.
生物膜是生物体内的基本组成部分,对生物的生存起着不可否认的作用。分子动力学(MD)是研究生物膜在分子和原子尺度上的重要计算工具。目前,生物膜的 MD 模拟研究是在周期性边界条件(PBCs)下周期性扩展的纳米级膜片。在自然界中,膜通常由两层中的不同脂质组成(称为双层)。这种组成上的不对称性在周期性约束的膜中对双层之间的脂质数量固定比例施加了限制,需要适当设置。广泛采用的定义双层脂质比例的方法缺乏对每个双层机械张力的控制,这可能会显著影响研究结果。在这项研究中,我们研究了膜构建方案和由此产生的初始应力状态对小分子和不对称膜相互作用的影响。我们使用两种不同的构建方案来模拟细菌的外膜,并探测它们与喹诺酮信号(PQS)的相互作用。我们的结果表明,差异应力可以改变 PQS 分子在不对称膜双层之间的自由能最小值的位置。这项工作提供了关于初始单层张力与 PQS 自发插入之间关系的重要见解。
J Chem Theory Comput. 2023-1-10
Methods Enzymol. 2024
J Phys Chem B. 2022-1-13
Phys Chem Chem Phys. 2018-9-19
Methods Enzymol. 2024
Nano Lett. 2019-7-5
Membranes (Basel). 2025-8-13
J Chem Inf Model. 2024-5-27
Curr Opin Struct Biol. 2024-8
Biophys J. 2024-3-19
Membranes (Basel). 2023-6-29
J Chem Phys. 2020-9-21
J Chem Theory Comput. 2020-2-26
Chem Rev. 2019-1-9