Section of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.
mBio. 2012 Mar 13;3(2). doi: 10.1128/mBio.00297-11. Print 2012.
Gram-negative bacteria naturally produce outer membrane vesicles (OMVs) that arise through bulging and pinching off of the outer membrane. OMVs have several biological functions for bacteria, most notably as trafficking vehicles for toxins, antimicrobials, and signaling molecules. While their biological roles are now appreciated, the mechanism of OMV formation has not been fully elucidated. We recently demonstrated that the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (PQS) is required for OMV biogenesis in P. aeruginosa. We hypothesized that PQS stimulates OMV formation through direct interaction with the outer leaflet of the outer membrane. To test this hypothesis, we employed a red blood cell (RBC) model that has been used extensively to study small-molecule-membrane interactions. Our results revealed that addition of PQS to RBCs induced membrane curvature, resulting in the formation of membrane spicules (spikes), consistent with small molecules that are inserted stably into the outer leaflet of the membrane. Radiotracer experiments demonstrated that sufficient PQS was inserted into the membrane to account for this curvature and that curvature induction was specific to PQS structure. These data suggest that a low rate of interleaflet flip-flop forces PQS to accumulate in and expand the outer leaflet relative to the inner leaflet, thus inducing membrane curvature. In support of PQS-mediated outer leaflet expansion, the PQS effect was antagonized by chlorpromazine, a molecule known to be preferentially inserted into the inner leaflet. Based on these data, we propose a bilayer-couple model to describe P. aeruginosa OMV biogenesis and suggest that this is a general mechanism for bacterial OMV formation.
Despite the ubiquity and importance of outer membrane vesicle (OMV) production in Gram-negative bacteria, the molecular details of OMV biogenesis are not fully understood. Early experiments showed that 2-heptyl-3-hydroxy-4-quinolone (PQS) induces OMV formation through physical interaction with the membrane but did not elucidate the mechanism. The present study demonstrates that PQS specifically and reversibly promotes blebbing of model membranes dependent upon the same properties that are required for OMV formation in P. aeruginosa. These results are consistent with a mechanism where expansion of the outer leaflet relative to the inner leaflet induces localized membrane curvature. This "bilayer-couple" model can account for OMV formation under all conditions and is easily generalized to other Gram-negative bacteria. The model therefore raises the possibility of a universal paradigm for vesicle production in prokaryotes with features strikingly different from what is known in eukaryotes.
革兰氏阴性细菌自然产生的外膜囊泡 (OMV) 是通过外膜的膨胀和收缩而产生的。OMV 对细菌具有多种生物学功能,最显著的是作为毒素、抗生素和信号分子的运输工具。虽然它们的生物学作用现在已经得到认可,但 OMV 形成的机制尚未完全阐明。我们最近证明,信号分子 2-庚基-3-羟基-4-喹诺酮 (PQS) 是铜绿假单胞菌 OMV 生物发生所必需的。我们假设 PQS 通过与外膜的外叶直接相互作用刺激 OMV 的形成。为了验证这一假设,我们采用了红细胞 (RBC) 模型,该模型已被广泛用于研究小分子-膜相互作用。我们的结果表明,向 RBC 中添加 PQS 会诱导膜曲率的产生,从而形成膜刺突(刺),这与稳定插入膜外叶的小分子一致。放射性示踪剂实验表明,足够的 PQS 插入膜中以解释这种曲率,并且曲率诱导是 PQS 结构特异性的。这些数据表明,叶间翻转的低速率迫使 PQS 在内外叶之间积累并扩展外叶,从而诱导膜曲率。支持 PQS 介导的外叶扩张,氯丙嗪拮抗 PQS 的作用,氯丙嗪是一种已知优先插入内叶的分子。基于这些数据,我们提出了一个双层偶联模型来描述铜绿假单胞菌 OMV 的生物发生,并表明这是细菌 OMV 形成的一般机制。
尽管革兰氏阴性细菌的外膜囊泡 (OMV) 产生普遍且重要,但 OMV 生物发生的分子细节尚不完全清楚。早期实验表明,2-庚基-3-羟基-4-喹诺酮 (PQS) 通过与膜的物理相互作用诱导 OMV 的形成,但并未阐明其机制。本研究表明,PQS 特异性且可逆地促进模型膜的起泡,这取决于在铜绿假单胞菌中形成 OMV 所需的相同特性。这些结果与一种机制一致,即相对于内叶的外叶的扩张诱导局部膜曲率。这种“双层偶联”模型可以解释在所有条件下的 OMV 形成,并且很容易推广到其他革兰氏阴性细菌。因此,该模型提出了一种在原核生物中产生囊泡的通用范例,其特征与真核生物中已知的特征明显不同。