Suppr超能文献

SARS-CoV-2 主蛋白酶药物设计、检测方法开发及耐药性研究。

SARS-CoV-2 Main Protease Drug Design, Assay Development, and Drug Resistance Studies.

机构信息

Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States.

出版信息

Acc Chem Res. 2023 Jan 17;56(2):157-168. doi: 10.1021/acs.accounts.2c00735. Epub 2022 Dec 29.

Abstract

SARS-CoV-2 is the etiological pathogen of the COVID-19 pandemic, which led to more than 6.5 million deaths since the beginning of the outbreak in December 2019. The unprecedented disruption of social life and public health caused by COVID-19 calls for fast-track development of diagnostic kits, vaccines, and antiviral drugs. Small molecule antivirals are essential complements of vaccines and can be used for the treatment of SARS-CoV-2 infections. Currently, there are three FDA-approved antiviral drugs, remdesivir, molnupiravir, and paxlovid. Given the moderate clinical efficacy of remdesivir and molnupiravir, the drug-drug interaction of paxlovid, and the emergence of SARS-CoV-2 variants with potential drug-resistant mutations, there is a pressing need for additional antivirals to combat current and future coronavirus outbreaks.In this Account, we describe our efforts in developing covalent and noncovalent main protease (M) inhibitors and the identification of nirmatrelvir-resistant mutants. We initially discovered GC376, calpain inhibitors II and XII, and boceprevir as dual inhibitors of M and host cathepsin L from a screening of a protease inhibitor library. Given the controversy of targeting cathepsin L, we subsequently shifted the focus to designing M-specific inhibitors. Specifically, guided by the X-ray crystal structures of these initial hits, we designed noncovalent M inhibitors such as Jun8-76-3R that are highly selective toward M over host cathepsin L. Using the same scaffold, we also designed covalent M inhibitors with novel cysteine reactive warheads containing di- and trihaloacetamides, which similarly had high target specificity. In parallel to our drug discovery efforts, we developed the cell-based FlipGFP M assay to characterize the cellular target engagement of our rationally designed M inhibitors. The FlipGFP assay was also applied to validate the structurally disparate M inhibitors reported in the literature. Lastly, we introduce recent progress in identifying naturally occurring M mutants that are resistant to nirmatrelvir from genome mining of the nsp5 sequences deposited in the GISAID database. Collectively, the covalent and noncovalent M inhibitors and the nirmatrelvir-resistant hot spot residues from our studies provide insightful guidance for future work aimed at developing orally bioavailable M inhibitors that do not have overlapping resistance profile with nirmatrelvir.

摘要

SARS-CoV-2 是 COVID-19 大流行的病原体,自 2019 年 12 月疫情爆发以来,导致超过 650 万人死亡。COVID-19 对社会生活和公共健康造成了前所未有的破坏,这需要快速开发诊断试剂盒、疫苗和抗病毒药物。小分子抗病毒药物是疫苗的重要补充,可以用于治疗 SARS-CoV-2 感染。目前,有三种获得 FDA 批准的抗病毒药物,瑞德西韦、莫努匹韦和帕罗韦德。鉴于瑞德西韦和莫努匹韦的临床疗效中等,帕罗韦德的药物相互作用,以及具有潜在耐药突变的 SARS-CoV-2 变体的出现,迫切需要额外的抗病毒药物来应对当前和未来的冠状病毒爆发。

在本报告中,我们描述了开发共价和非共价主蛋白酶(M)抑制剂以及鉴定奈玛特韦耐药突变体的努力。我们最初从蛋白酶抑制剂库的筛选中发现 GC376、钙蛋白酶抑制剂 II 和 XII 以及博赛匹韦是 M 和宿主组织蛋白酶 L 的双重抑制剂。鉴于靶向组织蛋白酶 L 的争议,我们随后将重点转移到设计 M 特异性抑制剂上。具体来说,根据这些初始命中的 X 射线晶体结构,我们设计了非共价 M 抑制剂,如 Jun8-76-3R,对 M 比对宿主组织蛋白酶 L 具有高度选择性。使用相同的支架,我们还设计了含有二卤代和三卤代乙酰胺的新型半胱氨酸反应性弹头的共价 M 抑制剂,它们同样具有高的靶标特异性。在我们的药物发现工作的同时,我们开发了基于细胞的 FlipGFP M 测定法来描述我们合理设计的 M 抑制剂的细胞靶标结合。FlipGFP 测定法还用于验证文献中报道的结构不同的 M 抑制剂。最后,我们介绍了从 GISAID 数据库中存储的 nsp5 序列的基因组挖掘中鉴定出对奈玛特韦耐药的天然存在的 M 突变体的最新进展。总之,我们的研究中的共价和非共价 M 抑制剂以及奈玛特韦耐药热点残基为开发具有口服生物利用度且与奈玛特韦没有重叠耐药谱的 M 抑制剂提供了有见地的指导。

相似文献

7
Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease.靶向 SARS-CoV-2 木瓜蛋白酶样蛋白酶的进展与挑战。
J Med Chem. 2022 Jun 9;65(11):7561-7580. doi: 10.1021/acs.jmedchem.2c00303. Epub 2022 May 27.

引用本文的文献

9
Antiviral activity of extract against feline coronavirus .提取物抗猫冠状病毒的抗病毒活性。
Vet Q. 2024 Dec;44(1):1-13. doi: 10.1080/01652176.2024.2349665. Epub 2024 May 7.

本文引用的文献

2
Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir.SARS-CoV-2 对奈玛特韦产生耐药性的多种途径。
Nature. 2023 Jan;613(7944):558-564. doi: 10.1038/s41586-022-05514-2. Epub 2022 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验