文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

哺乳动物三羧酸循环的调控与功能。

Regulation and function of the mammalian tricarboxylic acid cycle.

机构信息

Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

J Biol Chem. 2023 Feb;299(2):102838. doi: 10.1016/j.jbc.2022.102838. Epub 2022 Dec 26.


DOI:10.1016/j.jbc.2022.102838
PMID:36581208
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9871338/
Abstract

The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic, and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states.

摘要

三羧酸循环(TCA 循环),又称柠檬酸循环,是一种重要的代谢途径,其主要功能是氧化营养物质以支持细胞的生物能量学。最近,人们已经认识到 TCA 循环的行为是动态的,TCA 循环的产物可以在癌症和其他病理状态下被重新利用。在这篇综述中,我们重新审视了 TCA 循环,包括其潜在的起源和发现历史。我们详细介绍了维持 TCA 循环功能的要求,以及可以刺激或限制 TCA 循环活性的关键调节节点。我们还讨论了对 TCA 循环灵活性的最新认识,以及哺乳动物细胞中 TCA 循环活性日益增加的异质性。更深入地了解 TCA 循环如何被差异化调节,以及因此在不同的环境下如何配置,将有助于阐明这条途径如何被预先配置以满足不同哺乳动物细胞状态的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/3577a742336c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/41d5022f1485/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/d2c40a315f76/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/ac12b7d65856/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/dfd7f290fa3c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/8a02b329b0fd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/3577a742336c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/41d5022f1485/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/d2c40a315f76/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/ac12b7d65856/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/dfd7f290fa3c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/8a02b329b0fd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b88/9871338/3577a742336c/gr6.jpg

相似文献

[1]
Regulation and function of the mammalian tricarboxylic acid cycle.

J Biol Chem. 2023-2

[2]
A non-canonical tricarboxylic acid cycle underlies cellular identity.

Nature. 2022-3

[3]
Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function.

J Biol Chem. 2019-6-11

[4]
Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

Sports Med. 2007

[5]
The Role of TCA Cycle Enzymes in Plants.

Adv Biol (Weinh). 2023-8

[6]
Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes.

J Leukoc Biol. 2019-2-15

[7]
Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.

Mol Biol Cell. 2003-3

[8]
Glutamate synthesis has to be matched by its degradation - where do all the carbons go?

J Neurochem. 2014-11

[9]
Emerging Role of TCA Cycle-Related Enzymes in Human Diseases.

Int J Mol Sci. 2021-12-2

[10]
Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle.

FEBS J. 2020-4

引用本文的文献

[1]
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation.

Biology (Basel). 2025-8-5

[2]
Genome-wide CRISPR screen identifies Menin and SUZ12 as regulators of human developmental timing.

Nat Cell Biol. 2025-9-2

[3]
Targeting glucose transporters in parkinson's disease: a novel metabolic approach for disease modification.

Metab Brain Dis. 2025-8-29

[4]
Strategic targeting of AckA in Mycobacterium tuberculosis using peptide inhibitors.

Arch Microbiol. 2025-8-22

[5]
Changes of intestinal microbiota and liver metabolomics in yellow catfish () before and after rice flowering in rice-fish symbiosis farmed mode.

Front Microbiol. 2025-8-6

[6]
Epigenetic regulation of the respiratory chain by a mitochondrial distress-related redox signal.

Front Cell Dev Biol. 2025-8-5

[7]
Complex II assembly drives metabolic adaptation to OXPHOS dysfunction.

Sci Adv. 2025-8-15

[8]
The Efficiency of the Krebs Cycle and the Respiratory Chain in Physiologically and Prematurely Aging Bees ().

Int J Mol Sci. 2025-7-28

[9]
Impact of Salinity Stress on Antioxidant Enzyme Activity, Histopathology, and Gene Expression in the Hepatopancreas of the Oriental River Prawn, .

Animals (Basel). 2025-8-7

[10]
Targeting cuproptosis in liver cancer: Molecular mechanisms and therapeutic implications.

Apoptosis. 2025-8-7

本文引用的文献

[1]
Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells.

Mol Cell. 2022-9-1

[2]
Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited.

Nat Metab. 2022-6

[3]
A non-canonical tricarboxylic acid cycle underlies cellular identity.

Nature. 2022-3

[4]
The hallmarks of cancer metabolism: Still emerging.

Cell Metab. 2022-3-1

[5]
Cyanide as a primordial reductant enables a protometabolic reductive glyoxylate pathway.

Nat Chem. 2022-2

[6]
Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation.

Mol Cell. 2022-1-20

[7]
Fumarate is a terminal electron acceptor in the mammalian electron transport chain.

Science. 2021-12-3

[8]
Ins and Outs of the TCA Cycle: The Central Role of Anaplerosis.

Annu Rev Nutr. 2021-10-11

[9]
Principles of signaling pathway modulation for enhancing human naive pluripotency induction.

Cell Stem Cell. 2021-9-2

[10]
High CO levels drive the TCA cycle backwards towards autotrophy.

Nature. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索