Suppr超能文献

通过磷化铜改性隔膜迈向高性能镁硫电池

Toward High-Performance Mg-S Batteries via a Copper Phosphide Modified Separator.

作者信息

Yang Yang, Fu Wenbin, Zhang Duo, Ren Wen, Zhang Shuxin, Yan Yuantao, Zhang Yang, Lee Sang-Jun, Lee Jun-Sik, Ma Zi-Feng, Yang Jun, Wang Jiulin, NuLi Yanna

机构信息

School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China.

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States.

出版信息

ACS Nano. 2022 Dec 30. doi: 10.1021/acsnano.2c09302.

Abstract

Magnesium-sulfur (Mg-S) batteries are emerging as a promising alternative to lithium-ion batteries, due to their high energy density and low cost. Unfortunately, current Mg-S batteries typically suffer from the shuttle effect that originates from the dissolution of magnesium polysulfide intermediates, leading to several issues such as rapid capacity fading, large overcharge, severe self-discharge, and potential safety concern. To address these issues, here we harness a copper phosphide (CuP) modified separator to realize the adsorption of magnesium polysulfides and catalyzation of the conversion reaction of S and Mg toward stable cycling of Mg-S cells. The bifunctional layer with CuP confined in a carbon matrix is coated on a commercial polypropylene membrane to form a porous membrane with high electrolyte wettability and good thermal stability. Density functional theory (DFT) calculations, polysulfide permeability tests, and post-mortem analysis reveal that the catalytic layer can adsorb polysulfides, effectively restraining the shuttle effect and facilitating the reversibility of the Mg-S cells. As a result, the Mg-S cells can achieve a high specific capacity, fast rates (449 mAh g at 0.1 C and 249 mAh g at 1.0 C), and a long cycle life (up to 500 cycles at 0.5 C) and operate even at elevated temperatures.

摘要

镁硫(Mg-S)电池正作为锂离子电池的一种有前景的替代方案而兴起,这得益于其高能量密度和低成本。不幸的是,目前的Mg-S电池通常受到源自多硫化镁中间体溶解的穿梭效应的影响,导致诸如快速容量衰减、大的过充电、严重的自放电以及潜在的安全问题等若干问题。为了解决这些问题,在此我们利用磷化铜(CuP)改性隔膜来实现多硫化镁的吸附以及硫和镁转化反应的催化,以实现Mg-S电池的稳定循环。将CuP限制在碳基质中的双功能层涂覆在商业聚丙烯膜上,形成具有高电解质润湿性和良好热稳定性的多孔膜。密度泛函理论(DFT)计算、多硫化物渗透性测试和事后分析表明,催化层可以吸附多硫化物,有效抑制穿梭效应并促进Mg-S电池的可逆性。结果,Mg-S电池可以实现高比容量、快速倍率性能(0.1 C时为449 mAh g,1.0 C时为249 mAh g)以及长循环寿命(0.5 C时高达500次循环),甚至在高温下也能运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验