Suppr超能文献

用于在两个建模层面预测地下水对硝酸盐污染的脆弱性指数的新型机器学习算法。

Novel machine learning algorithms to predict the groundwater vulnerability index to nitrate pollution at two levels of modeling.

作者信息

Elzain Hussam Eldin, Chung Sang Yong, Venkatramanan Senapathi, Selvam Sekar, Ahemd Hamdi Abdurhman, Seo Young Kyo, Bhuyan Md Simul, Yassin Mohamed A

机构信息

Department. of Environmental & Earth Sciences, Pukyong National University, Busan, 48513, South Korea; Water Research Center, Sultan Qaboos University, Muscat, Oman.

Department. of Environmental & Earth Sciences, Pukyong National University, Busan, 48513, South Korea.

出版信息

Chemosphere. 2023 Feb;314:137671. doi: 10.1016/j.chemosphere.2022.137671. Epub 2022 Dec 28.

Abstract

The accurate mapping and assessment of groundwater vulnerability index are crucial for the preservation of groundwater resources from the possible contamination. In this research, novel intelligent predictive Machine Learning (ML) regression models of k-Neighborhood (KNN), ensemble Extremely Randomized Trees (ERT), and ensemble Bagging regression (BA) at two levels of modeling were utilized to improve DRASTIC-LU model in the Miryang aquifer located in South Korea. The predicted outputs from level 1 (KNN and ERT models) were used as inputs for ensemble bagging (BA) in level 2. The predictive groundwater pollution vulnerability index (GPVI), derived from DRASTIC-LU model was adjusted by NO-N data and was utilized as the target data of the ML models. Hyperparameters for all models were tuned using a Grid Searching approach to determine the best effective model structures. Various statistical metrics and graphical representations were used to evaluate the superior predictive performance among ML models. Ensemble BA model in level 2 was more precise than standalone KNN and ensemble ERT models in level 1 for predicting GPVI values. Furthermore, the ensemble BA model offered suitable outcomes for the unseen data that could subsequently prevent the overfitting issue in the testing phase. Therefore, ML modeling at two levels could be an excellent approach for the proactive management of groundwater resources against contamination.

摘要

准确绘制和评估地下水脆弱性指数对于保护地下水资源免受潜在污染至关重要。在本研究中,采用了新颖的智能预测机器学习(ML)回归模型,即k近邻(KNN)、集成极端随机树(ERT)和两级建模的集成装袋回归(BA),以改进韩国密阳市含水层的DRASTIC-LU模型。一级(KNN和ERT模型)的预测输出用作二级集成装袋(BA)的输入。由DRASTIC-LU模型得出的预测地下水污染脆弱性指数(GPVI)通过无氮数据进行调整,并用作ML模型的目标数据。使用网格搜索方法调整所有模型的超参数,以确定最佳有效模型结构。使用各种统计指标和图形表示来评估ML模型之间的卓越预测性能。二级的集成BA模型在预测GPVI值方面比一级的独立KNN和集成ERT模型更精确。此外,集成BA模型为未知数据提供了合适的结果,从而可以在测试阶段防止过拟合问题。因此,两级ML建模可能是主动管理地下水资源以防止污染的绝佳方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验