Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA.
Sci Rep. 2022 Dec 31;12(1):22625. doi: 10.1038/s41598-022-27254-z.
Artificial intelligence (AI)-based approaches can now use electrocardiograms (ECGs) to provide expert-level performance in detecting heart abnormalities and diagnosing disease. Additionally, patient age predicted from ECGs by AI models has shown great potential as a biomarker for cardiovascular age, where recent work has found its deviation from chronological age ("delta age") to be associated with mortality and co-morbidities. However, despite being crucial for understanding underlying individual risk, the genetic underpinning of delta age is unknown. In this work we performed a genome-wide association study using UK Biobank data (n=34,432) and identified eight loci associated with delta age ([Formula: see text]), including genes linked to cardiovascular disease (CVD) (e.g. SCN5A) and (heart) muscle development (e.g. TTN). Our results indicate that the genetic basis of cardiovascular ageing is predominantly determined by genes directly involved with the cardiovascular system rather than those connected to more general mechanisms of ageing. Our insights inform the epidemiology of CVD, with implications for preventative and precision medicine.
人工智能 (AI) 方法现在可以使用心电图 (ECG) 来提供检测心脏异常和诊断疾病的专家级性能。此外,人工智能模型从心电图预测的患者年龄已显示出作为心血管年龄生物标志物的巨大潜力,最近的研究发现其与实际年龄的偏差(“年龄差”)与死亡率和合并症相关。然而,尽管了解潜在的个体风险至关重要,但年龄差的遗传基础尚不清楚。在这项工作中,我们使用英国生物库 (UK Biobank) 数据 (n=34,432) 进行了全基因组关联研究,并确定了与年龄差相关的八个位点 ([Formula: see text]),包括与心血管疾病 (CVD) 相关的基因(例如 SCN5A)和(心脏)肌肉发育(例如 TTN)。我们的结果表明,心血管老化的遗传基础主要由直接涉及心血管系统的基因决定,而不是由与更普遍的衰老机制相关的基因决定。我们的见解为 CVD 的流行病学提供了信息,对预防和精准医学具有重要意义。