Amer Malak, Wolfenson Haguy
Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
Methods Mol Biol. 2023;2600:197-206. doi: 10.1007/978-1-0716-2851-5_13.
Accurately evaluating cellular forces is critical for studying mechanosensing and mechanotransduction processes, and it necessitates sensitive measurements on the piconewton scale. Here we describe a specialized method that employs elastic polydimethylsiloxane (PDMS) micropillar arrays, which cells can adhere to and bend. The flexibility of the pillars correlates with their heights; the longer they are, the easier they are to bend. Thus, an array of taller pillars mimics a relatively soft substrate that readily yields in response to cellular forces. Tracking cell movements and pillar displacements using live-cell microscopy enables the calculation of cellular forces and the tracking of their dynamic features throughout early and late stages of cell spreading on the pillars. This technique offers the advantage of high spatial and temporal resolution analyses and constitutes a method to investigate the effect of substrate rigidities on cellular functions.
准确评估细胞力对于研究机械传感和机械转导过程至关重要,这需要在皮牛顿尺度上进行灵敏测量。在此,我们描述一种专门方法,该方法采用弹性聚二甲基硅氧烷(PDMS)微柱阵列,细胞能够附着并使其弯曲。微柱的柔韧性与其高度相关;柱体越长,越容易弯曲。因此,一组更高的柱体模拟了一个相对柔软的底物,该底物容易响应细胞力而产生形变。使用活细胞显微镜跟踪细胞运动和柱体位移,能够计算细胞力并在细胞在柱体上铺展的早期和晚期全过程跟踪其动态特征。该技术具有高空间和时间分辨率分析的优势,构成了一种研究底物刚度对细胞功能影响的方法。