School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China.
School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China.
J Colloid Interface Sci. 2023 Apr;635:316-322. doi: 10.1016/j.jcis.2022.12.143. Epub 2022 Dec 30.
In previous studies, our research team found that the two-dimensional interstratification assembly electrode has the advantage of high energy density. However, the impedance mechanism model and interface ion diffusion law under different interstratification assembly methods are not clear. Here, we used two-dimensional MXene and NiCo-LDHs as raw materials, and prepared 1:3, 1:1 and 3:1 interstratification assembled MXene/NiCo-LDHs composite electrodes by the substrate surface direct spray method, respectively. The impedance analysis was carried out by electrochemical impedance spectroscopy (EIS), respectively, and the diffusion coefficients of OH ions in three models were measured and calculated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). Studies have shown that for 2D interstratification assembled electrodes, when the pseudocapacitive layer is closer to the electrolyte (when MXene:NiCo-LDHs = 1:3), the interface impedance is the smallest (R = 56.5 Ω), the ion diffusion efficiency is the fastest (D (ML) = 7.5706 × 10 cm s), and the electrochemical performance is the best, which provides important guidance for the design of two-dimensional interstratification assembled electrodes.
在之前的研究中,我们的研究团队发现二维层间组装电极具有能量密度高的优点。然而,不同层间组装方法下的阻抗机制模型和界面离子扩散规律尚不清楚。在这里,我们使用二维 MXene 和 NiCo-LDHs 作为原料,分别通过基底表面直接喷涂法制备了 1:3、1:1 和 3:1 的层间组装 MXene/NiCo-LDHs 复合电极。通过电化学阻抗谱(EIS)分别进行阻抗分析,并通过电化学阻抗谱(EIS)、循环伏安法(CV)和恒电流间歇滴定技术(GITT)测量和计算三种模型中 OH 离子的扩散系数。研究表明,对于 2D 层间组装电极,当赝电容层更接近电解质时(当 MXene:NiCo-LDHs=1:3),界面阻抗最小(R=56.5 Ω),离子扩散效率最快(D(ML)=7.5706×10-7 cm2 s-1),电化学性能最佳,这为二维层间组装电极的设计提供了重要指导。