Suppr超能文献

可充电电池插层电极材料的电化学技术。

Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.

机构信息

School of Chemistry and Environment, Beihang University , Beijing 100191, People's Republic of China.

Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States.

出版信息

Acc Chem Res. 2017 Apr 18;50(4):1022-1031. doi: 10.1021/acs.accounts.7b00031. Epub 2017 Mar 16.

Abstract

Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the principles of the aforementioned four electrochemical techniques and the corresponding analytical equations for calculating the chemical diffusion coefficients are first briefly summarized, followed by a discussion of the hidden assumptions for deriving these analytical equations and the resulting limitations in their implementation. To address these limitations, various corrections have been made in the literature. Nevertheless, the phase transition behavior, which is the typical feature for many intercalation materials, is barely considered. Here we retrospect our previous work on developing a two-phase model for describing the phase transition behavior of some intercalation compounds and discuss how to obtain the chemical diffusion coefficients based on the model, using LiFePO as an example material. After that, we have a discussion on the methodology for using electrochemical techniques to investigate new material features. It is our hope that this Account can serve as a call for more endeavors into the development of novel electrochemical tools for battery research.

摘要

了解电极材料的热力学和动力学性质对于开发高性能可充电电池的新材料至关重要。与计算电极材料的物理和化学性质相比,实验方法提供了对这些性质的直接和方便的评估。通常,从实验工作中获得的信息不仅可以为计算方法提供反馈,还可以为提高材料的性能提供有用的见解。然而,一些性质的准确实验量化仍然具有挑战性。其中,化学扩散系数就是一个代表性的例子。它是决定嵌入化合物动力学的最重要参数之一,而嵌入化合物是迄今为止可充电电池中使用的主要电极类型。因此,定量评估这个参数是很有意义的。为此,已经发明了各种电化学技术,例如恒电流间歇滴定技术(GITT)、恒电位间歇滴定技术(PITT)、电化学阻抗谱(EIS)和循环伏安法(CV)。与其他表征技术相比,这些电化学技术的一个显著优势是,可以将一些隐含的热力学和动力学量与可测量的电信号(电流和电压)联系起来,精度非常高。然而,这些技术的正确应用不仅需要对所研究材料的结构和化学有深入的了解,还需要对固体主体材料中离子传输的物理模型以及用于求解化学扩散系数的分析方法有足够的了解。我们的研究小组一直专注于使用各种电化学技术研究电池材料,并开发用于研究一些新兴材料的模型。在本专题介绍中,首先简要总结了上述四种电化学技术的原理和计算化学扩散系数的相应分析方程,然后讨论了推导这些分析方程的隐含假设以及在实施过程中的局限性。为了解决这些局限性,文献中已经提出了各种修正方法。然而,对于许多嵌入材料的典型特征相转变行为,几乎没有考虑。在这里,我们回顾了我们之前关于开发两相模型来描述一些嵌入化合物的相转变行为的工作,并以 LiFePO 为例讨论了如何基于该模型获得化学扩散系数。之后,我们讨论了使用电化学技术研究新材料特性的方法学。我们希望本专题介绍能够呼吁更多的努力来开发用于电池研究的新型电化学工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验