Stone Tiffanie F, Thompson Janette R, Rosentrater Kurt A, Liebman Matt
Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA.
Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA.
Sci Total Environ. 2023 Mar 20;865:161095. doi: 10.1016/j.scitotenv.2022.161095. Epub 2022 Dec 29.
Food systems are energy-intensive, causing ≈25 % of anthropogenic global warming potential (GWP) and contributing to challenges across the food-energy-water nexus. The state of Iowa, USA, is of particular interest as a rainfed agricultural region of the upper Midwest; despite its highly productive landscape, a large proportion of food consumed by Iowa residents is imported. This study focused on the Des Moines Metropolitan Statistical Area (DM-MSA), a six-county area in central Iowa with a 2020 population of ≈700,000. A life cycle assessment approach was used to quantify environmental impacts (GWP, fossil energy and water consumption, land use); scenarios modeled provision and consumption of 50 % of nutritional requirements for the current DM-MSA population by food group (e.g., grains, proteins, vegetables). The four DM-MSA food system scenarios were: 1) current conditions (baseline), 2) local production for 50 % of food, 3) consumption changed to follow USA dietary guidelines, and 4) combined changes to production and consumption. Localizing food production reduced all environmental impacts more than following USA dietary guidelines. Compared to the baseline, 50 % local production scenarios reduced GWP and energy consumption (18-24 %) and water use (35-41 %) annually. Decreases by food group were least for protein (-10 % GWP) and greatest for fruits and vegetables (-58-62 % GWP). Local scenario alternatives could further reduce some environmental impacts if paired with a nutritionally- and environmentally-optimized diet (EAT-Lancet) providing the greatest change (-30-38 % for GWP and energy use) compared to the local scenario. A 50 % local production scenario for the DM-MSA could decrease GWP by 102 million CO yr and water use by 44 billion L yr. However, this would require dietary changes based on seasonal food availability. Further development and co-simulation with other metropolitan-scale biophysical and social models will enhance understanding of food system drivers and support effective decision-making for urban food system improvements in the Midwest.
粮食系统能源密集,造成约25%的全球人为变暖潜能值(GWP),并给粮食 - 能源 - 水关系带来诸多挑战。美国爱荷华州作为中西部上游的雨养农业区,格外引人关注;尽管其农业高产,但爱荷华州居民消费的大部分食物却是进口的。本研究聚焦于得梅因大都市统计区(DM - MSA),这是爱荷华州中部的一个六县地区,2020年人口约70万。采用生命周期评估方法来量化环境影响(全球变暖潜能值、化石能源和水资源消耗、土地利用);各情景模拟了按食物类别(如谷物、蛋白质、蔬菜)为当前DM - MSA人口提供和消费50%营养需求的情况。DM - MSA的四种粮食系统情景分别为:1)当前状况(基线),2)50%食物的本地生产,3)消费改变以遵循美国饮食指南,4)生产和消费的综合改变。与遵循美国饮食指南相比,本地化粮食生产对所有环境影响的降低幅度更大。与基线相比,50%本地生产情景每年可减少全球变暖潜能值和能源消耗(18 - 24%)以及水资源使用(35 - 41%)。按食物类别减少幅度最小的是蛋白质(全球变暖潜能值降低10%),最大的是水果和蔬菜(全球变暖潜能值降低58 - 62%)。如果与提供最大变化(与本地情景相比,全球变暖潜能值和能源使用降低30 - 38%)的营养和环境优化饮食(EAT - 柳叶刀饮食)相结合,本地情景方案可能会进一步减少一些环境影响。DM - MSA的50%本地生产情景每年可减少1.02亿二氧化碳当量的全球变暖潜能值和440亿升的水资源使用。然而,这需要根据季节性食物供应情况改变饮食。与其他大都市规模的生物物理和社会模型进一步开展联合模拟,将增进对粮食系统驱动因素的理解,并为中西部城市粮食系统改善的有效决策提供支持。