Suppr超能文献

利用遥感-地形-气候协变量和混凝土自动编码器-深度神经网络绘制南非主要生物群落的土壤有机碳分布图。

Mapping soil organic carbon distribution across South Africa's major biomes using remote sensing-topo-climatic covariates and Concrete Autoencoder-Deep neural networks.

作者信息

Odebiri Omosalewa, Mutanga Onisimo, Odindi John, Naicker Rowan

机构信息

Discipline of Geography, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.

Discipline of Geography, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.

出版信息

Sci Total Environ. 2023 Mar 20;865:161150. doi: 10.1016/j.scitotenv.2022.161150. Epub 2022 Dec 29.

Abstract

The management of soil organic carbon (SOC) stocks remains at the forefront of greenhouse gas mitigation. However, unprecedented anthropogenic disturbances emanating from continued land-use change have significantly altered SOC distribution across global biomes leading to considerable carbon losses. Consequently, understanding the spatial distribution of SOC across different biomes, particularly at larger scales, is critical for climate change policy formulation and planning. Advancements in remote sensing, availability of big data, and deep learning architecture offer great potential in large-scale SOC mapping. In this regard, this study mapped SOC distribution across South Africa's major biomes using remotely sensed-topo-climatic data and Concrete Autoencoder-Deep neural networks (CAE-DNN). From the different deep neural frameworks tested, the CAE-DNN model (developed from 26 selected covariates) achieved the best accuracy with an RMSE value of 7.91 t/ha (about 20 % of the mean). Results further showed that SOC stock correlated with general biome coverage, as the Grassland and Savanna biomes contributed the most (32.38 % and 31.28 %) to the overall SOC pool in South Africa. However, despite their smaller footprint, Forests (44.12 t/h) and the Indian Ocean Coastal Belt (43.05 t/h) biomes demonstrated the highest SOC sequestration capacity. The restoration of degraded biomes is advocated for, in order to boost SOC storage; but a balance between carbon sequestration capacity, biodiversity health, and the adequate provision of ecosystem services must be maintained. To this end, these findings provide a guideline to facilitate sustainable SOC stock management within South Africa's major biomes and indeed other regions of the world.

摘要

土壤有机碳(SOC)储量的管理仍然是温室气体减排的首要任务。然而,持续的土地利用变化所带来的前所未有的人为干扰,已显著改变了全球生物群落中SOC的分布,导致大量碳损失。因此,了解不同生物群落中SOC的空间分布,尤其是在更大尺度上,对于气候变化政策的制定和规划至关重要。遥感技术的进步、大数据的可用性以及深度学习架构,为大规模SOC制图提供了巨大潜力。在这方面,本研究利用遥感地形气候数据和混凝土自动编码器-深度神经网络(CAE-DNN)绘制了南非主要生物群落的SOC分布图。在测试的不同深度神经框架中,CAE-DNN模型(由26个选定的协变量开发)实现了最佳精度,RMSE值为7.91吨/公顷(约为平均值的20%)。结果还表明,SOC储量与一般生物群落覆盖度相关,因为草原和稀树草原生物群落对南非整体SOC库的贡献最大(分别为32.38%和31.28%)。然而,尽管森林(44.12吨/公顷)和印度洋沿岸带(43.05吨/公顷)生物群落的面积较小,但它们展现出最高的SOC固存能力。为了增加SOC储存量,提倡对退化的生物群落进行恢复;但必须在碳固存能力、生物多样性健康以及生态系统服务的充分提供之间保持平衡。为此,这些研究结果为促进南非主要生物群落乃至世界其他地区的可持续SOC储量管理提供了指导方针。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验