Suppr超能文献

利用遥感变量对澳大利亚东部半干旱牧场土壤有机碳储量进行高分辨率制图。

High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

机构信息

NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, NSW 2650, Australia.

NSW Department of Primary Industries, Orange Agricultural Institute, NSW 2800, Australia.

出版信息

Sci Total Environ. 2018 Jul 15;630:367-378. doi: 10.1016/j.scitotenv.2018.02.204. Epub 2018 Feb 23.

Abstract

Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha at 0-5cm and 9.16MgCha at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring.

摘要

高效、有效的建模方法对于评估土壤有机碳(SOC)储量至关重要,因为这有助于我们了解全球碳循环并为相关土地管理决策提供信息。然而,由于数据的缺乏和空间覆盖范围的不足,半干旱牧场土壤有机碳储量的测绘工作极具挑战性。与基于实地的直接测量相比,利用遥感数据来提供 SOC 的间接测量并为数字土壤制图提供信息,具有提供更可靠、更具成本效益的 SOC 估算的潜力。尽管具有这种潜力,但遥感数据在提高半干旱牧场土壤信息知识方面的作用尚未得到充分探索。本研究首先探讨了在澳大利亚东部半干旱牧场中,利用高空间分辨率卫星数据(季节性分数覆盖数据;SFC)与海拔、岩性、气候数据和观测土壤数据相结合,绘制 SOC 在两个土壤深度(0-5cm 和 0-30cm)的空间分布。总体而言,模型性能统计数据表明,随机森林(RF)和提升回归树(BRT)模型的表现优于支持向量机(SVM)。模型在考虑 SFC 协变量时,在 0-5cm 处 SOC 储量的 R2 为 0.32,在 0-30cm 处为 0.44,在 0-5cm 处 RMSE 为 3.51MgCha,在 0-30cm 处为 9.16MgCha,获得了中等的结果。相比之下,通过包含 SFC,预测 SOC 储量的模型精度在 0-5cm 处提高了 7.4-12.7%,在 0-30cm 处提高了 2.8-5.9%,这突显了包含 SFC 以提高三种建模技术性能的重要性。此外,与该地区其他可用的制图产品相比,我们的模型生成的数字 SOC 储量地图更准确、分辨率更高。本研究的数据和高分辨率地图可用于未来的土壤碳评估和监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验