Department D of Internal Medicine, University Hospital of Munster, Munster, Germany.
Institute of Medical Physics and Biophysics, University of Munster, Munster, Germany.
Kidney Int. 2023 May;103(5):872-885. doi: 10.1016/j.kint.2022.11.024. Epub 2022 Dec 29.
Mutations in OSGEP and four other genes that encode subunits of the KEOPS complex cause Galloway-Mowat syndrome, a severe, inherited kidney-neurological disease. The complex catalyzes an essential posttranscriptional modification of tRNA and its loss of function induces endoplasmic reticulum (ER) stress. Here, using Drosophila melanogaster garland nephrocytes and cultured human podocytes, we aimed to elucidate the molecular pathogenic mechanisms of KEOPS-related glomerular disease and to test pharmacological inhibition of ER stress-related signaling as a therapeutic principle. We found that ATF4, an ER stress-mediating transcription factor, or its fly orthologue Crc, were upregulated in both fly nephrocytes and human podocytes. Knockdown of Tcs3, a fly orthologue of OSGEP, caused slit diaphragm defects, recapitulating the human kidney phenotype. OSGEP cDNA with mutations found in patients lacked the capacity for rescue. Genetic interaction studies in Tcs3-deficient nephrocytes revealed that Crc mediates not only cell injury, but surprisingly also slit diaphragm defects, and that genetic or pharmacological inhibition of Crc activation attenuates both phenotypes. These findings are conserved in human podocytes where ATF4 inhibition improved the viability of podocytes with OSGEP knockdown, with chemically induced ER stress, and where ATF4 target genes and pro-apoptotic gene clusters are upregulated upon OSGEP knockdown. Thus, our data identify ATF4-mediated signaling as a molecular link among ER stress, slit diaphragm defects, and podocyte injury, and our data suggest that modulation of ATF4 signaling may be a potential therapeutic target for certain podocyte diseases.
OSGEP 和其他四个编码 KEOPS 复合物亚基的基因突变导致 Galloway-Mowat 综合征,这是一种严重的遗传性肾脏-神经系统疾病。该复合物催化 tRNA 的必需转录后修饰,其功能丧失会诱导内质网 (ER) 应激。在这里,我们使用果蝇 melanogaster 花环肾细胞和培养的人足细胞,旨在阐明 KEOPS 相关肾小球疾病的分子发病机制,并测试 ER 应激相关信号通路的药理学抑制作为治疗原则。我们发现,ER 应激介导的转录因子 ATF4 或其果蝇同源物 Crc 在果蝇肾细胞和人足细胞中均上调。果蝇 OSGEP 同源物 Tcs3 的敲低导致裂孔隔膜缺陷,重现了人类肾脏表型。携带患者中发现的突变的 OSGEP cDNA 缺乏挽救能力。在 Tcs3 缺陷肾细胞中的遗传相互作用研究表明,Crc 不仅介导细胞损伤,而且令人惊讶的是还介导裂孔隔膜缺陷,并且 Crc 激活的遗传或药理学抑制可减轻这两种表型。这些发现在人足细胞中是保守的,其中 ATF4 抑制可改善 OSGEP 敲低的足细胞的活力,具有化学诱导的 ER 应激,并且在 OSGEP 敲低时 ATF4 靶基因和促凋亡基因簇上调。因此,我们的数据将 ATF4 介导的信号转导确定为 ER 应激、裂孔隔膜缺陷和足细胞损伤之间的分子联系,并且我们的数据表明,ATF4 信号转导的调节可能是某些足细胞疾病的潜在治疗靶点。