Zhao Lingxiao, Li Zhiyang, Qu Leilei
College of Ocean and Civil Engineering, Dalian Ocean University, Dalian 116024, China.
College of Civil Engineering, Chongqing University, Chongqing 400044, China.
Heliyon. 2022 Dec 9;8(12):e12239. doi: 10.1016/j.heliyon.2022.e12239. eCollection 2022 Dec.
Accurate particulate matter 2.5 (PM) prediction plays a crucial role in the accurate management of air pollution and prevention of respiratory diseases. However, PM, as a nonlinear time series with great volatility, is difficult to achieve accurate prediction. In this paper, a hybrid autoregressive integrated moving average (ARIMA) model is proposed based on the Augmented Dickey-Fuller test (ADF root test) of annual PM data, thus demonstrating the necessity of first-order difference. The new method of using integrated akaike information criterion (AIC) and improved grid search (GS) methods is proposed to avoid the bias caused by using AIC alone to determine the order because the data are not exactly normally distributed. The comprehensive evaluation coefficient (CEC) is used to select the optimal parameter structure of the prediction model by considering multiple evaluation perspectives. The entropy value of the decomposed series is obtained by using range entropy A (RangeEn_A), and the series is reconstructed according to the entropy value, and finally the reconstructed series is predicted. We used Beijing PM data for validation and the results showed that the new hybrid ARIMA model improved values of RMSE 99.23%, MAE 99.20%, R 118.61%, TIC 99.28%, NMAE 98.71%, NMSE 99.97%, OPC 43.13%, MOPC 98.43% and CEC 99.25% compared with the traditional ARIMA model. The results show that the method does greatly improve the prediction performance and provides a convincing tool for policy formulation and governance.
准确的细颗粒物2.5(PM)预测在空气污染的精确管理和呼吸道疾病的预防中起着至关重要的作用。然而,PM作为一个具有很大波动性的非线性时间序列,难以实现准确预测。本文基于年度PM数据的增强迪基 - 富勒检验(ADF根检验)提出了一种混合自回归积分移动平均(ARIMA)模型,从而证明了一阶差分的必要性。提出了使用集成赤池信息准则(AIC)和改进的网格搜索(GS)方法的新方法,以避免因数据并非完全正态分布而仅使用AIC确定阶数所导致的偏差。综合评价系数(CEC)用于从多个评价角度选择预测模型的最优参数结构。通过使用范围熵A(RangeEn_A)获得分解序列的熵值,并根据该熵值对序列进行重构,最后对重构后的序列进行预测。我们使用北京的PM数据进行验证,结果表明,与传统ARIMA模型相比,新的混合ARIMA模型在均方根误差(RMSE)、平均绝对误差(MAE)、相关系数(R)、总信息准则(TIC)、归一化平均绝对误差(NMAE)、归一化均方误差(NMSE)、最优预测准则(OPC)、平均最优预测准则(MOPC)和综合评价系数(CEC)方面分别提高了99.23%、99.20%、118.61%、99.28%缉毒71%、99.97%、43.13%、98.43%和99.25%。结果表明,该方法大大提高了预测性能,为政策制定和治理提供了一个有说服力的工具。