School of Marine Engineer Equipment, Zhejiang Ocean University, Zhoushan, China.
Sci Rep. 2023 Jul 26;13(1):12127. doi: 10.1038/s41598-023-36620-4.
Air pollution is a serious problem that affects economic development and people's health, so an efficient and accurate air quality prediction model would help to manage the air pollution problem. In this paper, we build a combined model to accurately predict the AQI based on real AQI data from four cities. First, we use an ARIMA model to fit the linear part of the data and a CNN-LSTM model to fit the non-linear part of the data to avoid the problem of blinding in the CNN-LSTM hyperparameter setting. Then, to avoid the blinding dilemma in the CNN-LSTM hyperparameter setting, we use the Dung Beetle Optimizer algorithm to find the hyperparameters of the CNN-LSTM model, determine the optimal hyperparameters, and check the accuracy of the model. Finally, we compare the proposed model with nine other widely used models. The experimental results show that the model proposed in this paper outperforms the comparison models in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R). The RMSE values for the four cities were 7.594, 14.94, 7.841 and 5.496; the MAE values were 5.285, 10.839, 5.12 and 3.77; and the R values were 0.989, 0.962, 0.953 and 0.953 respectively.
空气污染是一个严重的问题,影响经济发展和人们的健康,因此一个高效准确的空气质量预测模型将有助于管理空气污染问题。在本文中,我们构建了一个组合模型,基于来自四个城市的实际空气质量指数数据来准确预测 AQI。首先,我们使用 ARIMA 模型拟合数据的线性部分,使用 CNN-LSTM 模型拟合数据的非线性部分,以避免 CNN-LSTM 超参数设置中的盲目问题。然后,为了避免 CNN-LSTM 超参数设置中的盲目问题,我们使用 dung beetle optimizer 算法来寻找 CNN-LSTM 模型的超参数,确定最佳超参数,并检查模型的准确性。最后,我们将提出的模型与其他九个广泛使用的模型进行了比较。实验结果表明,本文提出的模型在均方根误差 (RMSE)、平均绝对误差 (MAE) 和决定系数 (R) 方面均优于比较模型。四个城市的 RMSE 值分别为 7.594、14.94、7.841 和 5.496;MAE 值分别为 5.285、10.839、5.12 和 3.77;R 值分别为 0.989、0.962、0.953 和 0.953。