Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai, Tamil Nadu, India.
School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
Comput Intell Neurosci. 2022 Dec 23;2022:7453935. doi: 10.1155/2022/7453935. eCollection 2022.
In recent times, the early detection of brain tumour analysis and classification has become a very vital part of the medical field. The MRI scan image is the most significant tool to study brain tissue for proper diagnosis and efficient treatment planning to detect the early stages. In this research study, the two contributions were executed in the preprocessing mode. (a) Using wavelet transform to apply decomposed sub-bands of a low-frequency signal to control and adapt the spatial and intensity parameters in a bilateral filter and (b) to detect texture regions and block boundary to control and adapt the spatial and intensity parameters in a bilateral filter When compared to other image resolution methods, the adaptive bilateral method restores the original image quality and has a higher accuracy rate. Using the hybrid segmentation method of GCPSO (Guaranteed Convergence Particle Swarm Optimization) -FCM (Fuzzy -Mean) techniques, the results were compared with various segmentation. The proposed segmentation gives a better accuracy rate of 95.32%.
近年来,脑肿瘤的早期检测和分类已经成为医学领域非常重要的一部分。MRI 扫描图像是研究脑组织的最重要工具,可用于正确诊断和制定高效的治疗计划以检测早期阶段。在这项研究中,预处理模式下执行了两个贡献。(a) 使用小波变换将低频信号的分解子带应用于双边滤波器中以控制和适应空间和强度参数,以及(b) 检测纹理区域和块边界以控制和适应双边滤波器中的空间和强度参数。与其他图像分辨率方法相比,自适应双边方法可以恢复原始图像质量,并且具有更高的准确率。使用 GCPSO (有保证收敛粒子群优化) -FCM (模糊均值) 技术的混合分割方法,将结果与各种分割方法进行了比较。所提出的分割方法的准确率达到了 95.32%。