Suppr超能文献

前庭毛细胞-壶腹突触的非量子传递:K 电流调节快速电和慢速 K 电位。

Nonquantal transmission at the vestibular hair cell-calyx synapse: K currents modulate fast electrical and slow K potentials.

机构信息

Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005.

Department of Bioengineering, Rice University, Houston, TX 77005.

出版信息

Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2207466120. doi: 10.1073/pnas.2207466120. Epub 2023 Jan 3.

Abstract

Vestibular hair cells transmit information about head position and motion across synapses to primary afferent neurons. At some of these synapses, the afferent neuron envelopes the hair cell, forming an enlarged synaptic terminal called a calyx. The vestibular hair cell-calyx synapse supports a mysterious form of electrical transmission that does not involve gap junctions, termed nonquantal transmission (NQT). The NQT mechanism is thought to involve the flow of ions from the presynaptic hair cell to the postsynaptic calyx through low-voltage-activated channels driven by changes in cleft [K] as K exits the hair cell. However, this hypothesis has not been tested with a quantitative model and the possible role of an electrical potential in the cleft has remained speculative. Here, we present a computational model that captures experimental observations of NQT and identifies features that support the existence of an electrical potential () in the synaptic cleft. We show that changes in cleft reduce transmission latency and illustrate the relative contributions of both cleft [K] and to the gain and phase of NQT. We further demonstrate that the magnitude and speed of NQT depend on calyx morphology and that increasing calyx height reduces action potential latency in the calyx afferent. These predictions are consistent with the idea that the calyx evolved to enhance NQT and speed up vestibular signals that drive neural circuits controlling gaze, balance, and orientation.

摘要

前庭毛细胞通过突触将头部位置和运动的信息传递给初级传入神经元。在这些突触中的一些,传入神经元包裹着毛细胞,形成一个扩大的突触末端,称为杯状复合体。前庭毛细胞-杯状复合体突触支持一种神秘的电传递形式,不涉及间隙连接,称为非量子传递(NQT)。NQT 机制被认为涉及离子从突触前毛细胞通过低电压激活通道流入突触后杯状复合体,这种通道由胞外 [K] 的变化驱动,因为 K 从毛细胞中逸出。然而,这个假设尚未通过定量模型进行测试,并且在裂隙中存在电势的可能性仍然是推测性的。在这里,我们提出了一个计算模型,该模型捕获了 NQT 的实验观察结果,并确定了支持突触间隙中存在电势()的特征。我们表明,裂隙中 [K] 的变化会降低传输延迟,并说明了裂隙 [K] 和 对 NQT 的增益和相位的相对贡献。我们进一步证明,NQT 的幅度和速度取决于杯状复合体的形态,并且增加杯状复合体的高度会降低杯状复合体传入的动作电位延迟。这些预测与以下观点一致,即杯状复合体的进化是为了增强 NQT 并加速前庭信号,从而驱动控制眼球、平衡和方向的神经回路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d93b/9926171/6312ac870888/pnas.2207466120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验