Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France; Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasilia, Doca de Pedroucos, 1400-038 Lisboa, Portugal.
Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France.
STAR Protoc. 2022 Dec 16;3(4):101850. doi: 10.1016/j.xpro.2022.101850. Epub 2022 Nov 19.
Recently, we introduced a powerful approach that leverages differences in swimming behaviors of two closely related fish species to identify previously unreported locomotion-related neuronal correlates. Here, we present this analysis approach applicable for any species of fish to compare their short and long timescale swimming kinematics. We describe steps for data collection and cleaning, followed by the calculation of short timescale kinematics using half tail beats and the analysis of long timescale kinematics using mean square displacement and heading decorrelation. For complete details on the use and execution of this protocol, please refer to Rajan et al. (2022)..
最近,我们介绍了一种强大的方法,利用两种密切相关鱼类的游泳行为差异来识别以前未报道的与运动相关的神经元相关性。在这里,我们提出了这种适用于任何鱼类物种的分析方法,以比较它们的短时间和长时间尺度的游泳运动学。我们描述了数据收集和清理的步骤,然后使用半拍尾巴计算短时间尺度的运动学,使用均方位移和航向去相关分析长时间尺度的运动学。有关使用和执行此方案的完整详细信息,请参阅 Rajan 等人。(2022 年)。