Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.
Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France.
Cell Rep. 2022 Mar 29;38(13):110585. doi: 10.1016/j.celrep.2022.110585.
Locomotion exists in diverse forms in nature; however, little is known about how closely related species with similar neuronal circuitry can evolve different navigational strategies to explore their environments. Here, we investigate this question by comparing divergent swimming pattern in larval Danionella cerebrum (DC) and zebrafish (ZF). We show that DC displays long continuous swimming events when compared with the short burst-and-glide swimming in ZF. We reveal that mesencephalic locomotion maintenance neurons in the midbrain are sufficient to cause this increased swimming. Moreover, we propose that the availability of dissolved oxygen and timing of swim bladder inflation drive the observed differences in the swim pattern. Our findings uncover the neural substrate underlying the evolutionary divergence of locomotion and its adaptation to their environmental constraints.
在自然界中,运动形式多种多样;然而,人们对于具有相似神经元回路的亲缘物种如何进化出不同的导航策略以探索其环境知之甚少。在这里,我们通过比较脑小鳔鮈(DC)和斑马鱼(ZF)幼虫中不同的游动模式来研究这个问题。我们发现,与 ZF 的短爆发-滑翔游动相比,DC 表现出长的连续游动事件。我们揭示了中脑中的中脑运动维持神经元足以引起这种增加的游动。此外,我们提出,溶解氧的可用性和鳔充气的时间决定了游动模式的差异。我们的研究结果揭示了运动进化分歧及其对环境限制的适应的神经基础。