Department of Orthopedic Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan.
Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
Medicine (Baltimore). 2022 Dec 30;101(52):e32369. doi: 10.1097/MD.0000000000032369.
Spine trauma, vertebral metastases, and osteoporosis (SVO) can result in serious health problems. If the diagnosis of SVO is delayed, the prognosis may be deteriorated. The use of artificial intelligence (AI) is an essential method for minimizing the diagnostic errors associated with SVO. research achievements (RAs) of SVO on AI are required as a result of the greatest number of studies on AI solutions reported. The study aimed to: classify article themes using visualizations, illustrate the characteristics of SVO on AI recently, compare RAs of SVO on AI between entities (e.g., countries, institutes, departments, and authors), and determine whether the mean citations of keywords can be used to predict article citations.
A total of 31 articles from SVO on AI (denoted by T31SVOAI) have been found in Web of Science since 2018. The dominant entities were analyzed using the CJAL score and the Y-index. Five visualizations were applied to report: the themes of T31SVOAI and their RAs in comparison for article entities and verification of the hypothesis that the mean citations of keywords can predict article citations, including: network diagrams, chord diagrams, dot plots, a Kano diagram, and radar plots.
There were five themes classified (osteoporosis, personalized medicine, fracture, deformity, and cervical spine) by a chord diagram. The dominant entities with the highest CJAL scores were the United States (22.05), the University of Pennsylvania (5.72), Radiology (6.12), and Nithin Kolanu (Australia) (9.88). The majority of articles were published in Bone, J. Bone Miner. Res., and Arch. Osteoporos., with an equal count (=3). There was a significant correlation between the number of article citations and the number of weighted keywords (F = 392.05; P < .0001).
A breakthrough was achieved by displaying the characteristics of T31SVOAI using the CJAL score, the Y-index, and the chord diagram. Weighted keywords can be used to predict article citations. The five visualizations employed in this study may be used in future bibliographical studies.
脊柱创伤、椎体转移和骨质疏松症(SVO)可导致严重的健康问题。如果 SVO 的诊断延迟,预后可能会恶化。人工智能(AI)的使用是最小化与 SVO 相关的诊断错误的必要方法。由于报告的 AI 解决方案研究最多,因此需要 SVO 相关 AI 的研究成果(RA)。本研究旨在:使用可视化方法对文章主题进行分类,说明最近 SVO 中 AI 的特点,比较 SVO 中 AI 的 RA 之间的实体(如国家、机构、部门和作者),并确定关键字的平均引用数是否可用于预测文章引用数。
自 2018 年以来,在 Web of Science 中总共找到了 31 篇关于 SVO 中 AI 的文章(记为 T31SVOAI)。使用 CJAL 评分和 Y 指数分析主要实体。应用了五种可视化方法来报告:T31SVOAI 的主题及其 RA 进行比较,以验证关键字的平均引用数可以预测文章引用数的假设,包括:网络图、和弦图、点图、Kano 图和雷达图。
通过和弦图对 5 个主题进行了分类(骨质疏松症、个性化医学、骨折、畸形和颈椎)。具有最高 CJAL 评分的主要实体是美国(22.05)、宾夕法尼亚大学(5.72)、放射学(6.12)和澳大利亚的 Nithin Kolanu(9.88)。大多数文章发表在《骨》、《J.骨矿质研究》和《骨质疏松症档案》上,数量相等(=3)。文章引用数与加权关键字数之间存在显著相关性(F=392.05;P<.0001)。
通过使用 CJAL 评分、Y 指数和弦图显示 T31SVOAI 的特点,取得了突破。加权关键字可用于预测文章引用数。本研究中使用的五种可视化方法可用于未来的文献研究。