Solorzano Jacobo, Carrillo-de Santa Pau Enrique, Laguna Teresa, Busturia Ana
Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, 28049, Madrid, Spain; Centre de Recherches en Cancerologie de Toulouse, 2 Av. Hubert Curien, 31100, Toulouse, France.
Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain.
Dev Biol. 2023 Mar;495:63-75. doi: 10.1016/j.ydbio.2022.12.008. Epub 2022 Dec 31.
Characterization of gene regulatory networks is fundamental to understanding homeostatic development. This process can be simplified by analyzing relatively simple genomes such as the genome of Drosophila melanogaster. In this work we have developed a computational framework in Drosophila to explore for the presence of gene regulatory circuits between two large groups of transcriptional regulators: the epigenetic group of the Polycomb/trithorax (PcG/trxG) proteins and the microRNAs (miRNAs). We have searched genome-wide for miRNA targets in PcG/trxG transcripts as well as for Polycomb Response Elements (PREs) in miRNA genes. Our results show that 10% of the analyzed miRNAs could be controlling PcG/trxG gene expression, while 40% of those miRNAs are putatively controlled by the selected set of PcG/trxG proteins. The integration of these analyses has resulted in the predicted existence of 3 classes of miRNA-PcG/trxG crosstalk interactions that define potential regulatory circuits. In the first class, miRNA-PcG circuits are defined by miRNAs that reciprocally crosstalk with PcG. In the second, miRNA-trxG circuits are defined by miRNAs that reciprocally crosstalk with trxG. In the third class, miRNA-PcG/trxG shared circuits are defined by miRNAs that crosstalk with both PcG and trxG regulators. These putative regulatory circuits may uncover a novel mechanism in Drosophila for the control of PcG/trxG and miRNAs levels of expression. The computational framework developed here for Drosophila melanogaster can serve as a model case for similar analyses in other species. Moreover, our work provides, for the first time, a new and useful resource for the Drosophila community to consult prior to experimental studies investigating the epigenetic regulatory networks of miRNA-PcG/trxG mediated gene expression.
基因调控网络的特征描述是理解稳态发育的基础。通过分析相对简单的基因组,如黑腹果蝇的基因组,这一过程可以得到简化。在这项工作中,我们在果蝇中开发了一个计算框架,以探索两组大型转录调节因子之间基因调控回路的存在:多梳/三胸复合体(PcG/trxG)蛋白的表观遗传组和微小RNA(miRNA)。我们在全基因组范围内搜索了PcG/trxG转录本中的miRNA靶标以及miRNA基因中的多梳反应元件(PRE)。我们的结果表明,10%的分析miRNA可能控制PcG/trxG基因表达,而这些miRNA中的40%可能由所选的PcG/trxG蛋白组控制。这些分析的整合导致预测存在3类miRNA-PcG/trxG串扰相互作用,这些相互作用定义了潜在的调控回路。在第一类中,miRNA-PcG回路由与PcG相互串扰的miRNA定义。在第二类中,miRNA-trxG回路由与trxG相互串扰的miRNA定义。在第三类中,miRNA-PcG/trxG共享回路由与PcG和trxG调节因子都串扰的miRNA定义。这些假定的调控回路可能揭示果蝇中控制PcG/trxG和miRNA表达水平的新机制。这里为黑腹果蝇开发的计算框架可以作为其他物种类似分析的模型案例。此外,我们的工作首次为果蝇研究群体提供了一个新的有用资源,以便在进行调查miRNA-PcG/trxG介导的基因表达的表观遗传调控网络的实验研究之前进行参考。