Suppr超能文献

通过贝叶斯系统发育分析推断人类文化的空间演变。

Spatial evolution of human cultures inferred through Bayesian phylogenetic analysis.

机构信息

Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, Nakano 4-21-1, Nakanoku, Tokyo 164-8525, Japan.

Department of Biological Sciences, the University of Tokyo, Hongo 7-3-1, Bunkyoku, Tokyo 113-0033, Japan.

出版信息

J R Soc Interface. 2023 Jan;20(198):20220543. doi: 10.1098/rsif.2022.0543. Epub 2023 Jan 4.

Abstract

Spatial distribution of human culture reflects both descent from the common ancestor and horizontal transmission among neighbouring populations. To analyse empirically documented geographical variations in cultural repertoire, we will describe a framework for Bayesian statistics in a spatially explicit model. To consider both horizontal transmission and mutation of the cultural trait in question, our method employs a network model in which populations are represented by nodes. Using algorithms borrowed from Bayesian phylogenetic analysis, we will perform a Markov chain Monte Carlo (MCMC) method to compute the posterior distributions of parameters, such as the rate of horizontal transmission and the mutation rates among trait variants, as well as the identity of trait variants in unobserved populations. Besides the inference of model parameters, our method enables the reconstruction of the genealogical tree of the focal trait, provided that the mutation rate is sufficiently small. We will also describe a heuristic algorithm to reduce the dimension of the parameter space explored in the MCMC method, where we simulate the coalescent process in the network of populations. Numerical examples show that our algorithms compute the posterior distribution of model parameters within a practical computation time, although the posterior distribution tends to be broad if we use uninformative priors.

摘要

人类文化的空间分布反映了共同祖先的血缘关系和邻近群体之间的水平传播。为了分析有文献记录的文化库地理变异的实证数据,我们将描述一个在空间明确模型中应用贝叶斯统计的框架。为了同时考虑所研究的文化特征的水平传播和突变,我们的方法采用了一种网络模型,其中群体由节点表示。我们使用从贝叶斯系统发育分析中借用的算法,将执行马尔可夫链蒙特卡罗(MCMC)方法,以计算参数的后验分布,例如水平传播的速率和特征变体之间的突变率,以及未观察到的群体中特征变体的身份。除了模型参数的推断外,如果突变率足够小,我们的方法还可以重建焦点特征的系统发育树。我们还将描述一种启发式算法,以减少 MCMC 方法中探索的参数空间的维度,我们在其中模拟了群体网络中的融合过程。数值示例表明,尽管使用无信息先验时后验分布趋于广泛,但我们的算法可以在实际计算时间内计算模型参数的后验分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7361/9810426/358482965441/rsif20220543f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验